Advertisement

Understanding Chagas Disease by Genome and Transcriptome Exploration

  • Ludmila Rodrigues P. Ferreira
  • Edecio Cunha-Neto
Chapter

Abstract

The most fundamental level at which the genome information gives rise to the phenotype is by the expression of its genes. Recent results from the ENCODE project, a 10-year effort by hundreds of scientists to characterize the human genome in depth, have indicated that a much larger proportion of our DNA is likely to be expressed and functional than previously estimated. This has put the focus back on RNA as a key component of organism development, meaning that the measurement of gene expression continues to be a critical tool employed across drug discovery, and life science research. Microarray technology has yielded much important information about the ‘transcriptome’ (or the entire profile of transcripts in a species) and as such has been invaluable in providing the link between information encoded in the genome and phenotype. The great benefit of this approach is that it allows a researcher to investigate the expression of every gene in the genome in a single experiment. This technology has helped scientists to understand biological mechanisms of complex diseases, as Chagas disease or American trypanosomiasis, caused by an intracellular parasite, Trypanosoma cruzi, and it is a leading cause of heart failure in Latin America. In this chapter, we will explore the basic aspects of Chagas disease and how research based on genome and trasncriptome exploration has been helping our understanding about different aspects and clinical outcomes of the disease.

Keywords

Connective Tissue Growth Factor Mitochondrial Energy Metabolism Reactive Nitrogen Intermediate Metacyclic Trypomastigotes American Trypanosomiasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abel LC, Rizzo LV, Ianni B, Albuquerque F, Bacal F, Carrara D, Bocchi EA, Teixeira HC, Mady C, Kalil J, Cunha-Neto E (2001) Chronic Chagas’ disease cardiomyopathy patients display an increased IFN-gamma response to Trypanosoma cruzi infection. J Autoimmun 17(1):99–107. doi:10.1006/jaut.2001.0523PubMedCrossRefGoogle Scholar
  2. Bilate AM, Cunha-Neto E (2008) Chagas disease cardiomyopathy: current concepts of an old disease. Rev Inst Med Trop Sao Paulo 50(2):67–74PubMedCrossRefGoogle Scholar
  3. Bilate AM, Teixeira PC, Ribeiro SP, Brito T, Silva AM, Russo M, Kalil J, Cunha-Neto E (2008) Distinct outcomes of Trypanosoma cruzi infection in hamsters are related to myocardial parasitism, cytokine/chemokine gene expression, and protein expression profile. J Infect Dis 198(4):614–623. doi:10.1086/590347PubMedCrossRefGoogle Scholar
  4. Bostjancic E, Zidar N, Stajner D, Glavac D (2010) MicroRNA miR-1 is up-regulated in remote myocardium in patients with myocardial infarction. Folia Biol (Praha) 56(1):27–31Google Scholar
  5. Campos MA, Closel M, Valente EP, Cardoso JE, Akira S, Alvarez-Leite JI, Ropert C, Gazzinelli RT (2004) Impaired production of proinflammatory cytokines and host resistance to acute infection with Trypanosoma cruzi in mice lacking functional myeloid differentiation factor 88. J Immunol 172(3):1711–1718PubMedCrossRefGoogle Scholar
  6. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233. doi:10.1038/ng1725PubMedCentralPubMedCrossRefGoogle Scholar
  7. Committee WHOE (2002) Control of Chagas disease. World Health Organ Tech Rep Ser 905:i–vi, 1–109 (back cover)Google Scholar
  8. Coura JR, Borges-Pereira J (2010) Chagas disease: 100 years after its discovery. A systemic review. Acta Trop 115(1–2):5–13. doi:10.1016/j.actatropica.2010.03.008PubMedCrossRefGoogle Scholar
  9. Cunha-Neto E, Dzau VJ, Allen PD, Stamatiou D, Benvenutti L, Higuchi ML, Koyama NS, Silva JS, Kalil J, Liew CC (2005) Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas’ disease cardiomyopathy. Am J Pathol 167(2):305–313. doi:10.1016/S0002-9440(10)62976-8PubMedCentralPubMedCrossRefGoogle Scholar
  10. Delaporte F (1997) Romana’s sign. J Hist Biol 30(3):357–366PubMedCrossRefGoogle Scholar
  11. Deng X, Sabino EC, Cunha-Neto E, Ribeiro AL, Ianni B, Mady C, Busch MP, Seielstad M, International RCSGftNREDS-IC (2013) Genome wide association study (GWAS) of Chagas cardiomyopathy in Trypanosoma cruzi seropositive subjects. PLoS One 8(11):e79629. doi:10.1371/journal.pone.0079629PubMedCentralPubMedCrossRefGoogle Scholar
  12. de Souza W de Carvalho TM Barrias ES (2010) Review on Trypanosoma cruzi: host cell interaction. Int J Cell Biol pii:295394. doi:10.1155/2010/295394Google Scholar
  13. Dias JC (1997) Cecilio Romana, Romana’s sign and Chagas’ disease. Rev Soc Bras Med Trop 30(5):407–413PubMedCrossRefGoogle Scholar
  14. Dias JC (2009) Elimination of Chagas disease transmission: perspectives. Mem Inst Oswaldo Cruz 104(Suppl 1):41–45PubMedCrossRefGoogle Scholar
  15. Diaz JH (2007) Chagas disease in the United States: a cause for concern in Louisiana? J La State Med Soc159(1):21–23, 25–29PubMedGoogle Scholar
  16. Divakaran VG (2010) MicroRNAs miR-1, -133 and -208: same faces, new roles. Cardiology 115(3):172–173. doi:10.1159/000272540PubMedCrossRefGoogle Scholar
  17. Ferreira LR, Frade AF, Santos RH, Teixeira PC, Baron MA, Navarro IC, Benvenuti LA, Fiorelli AI, Bocchi EA, Stolf NA, Chevillard C, Kalil J, Cunha-Neto E (2014) MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and miR-208b are dysregulated in Chronic Chagas disease Cardiomyopathy. Int J Cardiol 175(3):400–417. doi:10.1016/j.ijcard.2014.05.019CrossRefGoogle Scholar
  18. Garg N, Popov VL, Papaconstantinou J (2003) Profiling gene transcription reveals a deficiency of mitochondrial oxidative phosphorylation in Trypanosoma cruzi-infected murine hearts: implications in chagasic myocarditis development. Biochim Biophys Acta 1638(2):106–120PubMedCrossRefGoogle Scholar
  19. Gazzinelli RT, Denkers EY (2006) Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism. Nat Rev Immunol 6(12):895–906. doi:10.1038/nri1978PubMedCrossRefGoogle Scholar
  20. Goldenberg RC, Iacobas DA, Iacobas S, Rocha LL, da Silva de Azevedo Fortes F, Vairo L, Nagajyothi F, Campos de Carvalho AC, Tanowitz HB, Spray DC (2009) Transcriptomic alterations in Trypanosoma cruzi-infected cardiac myocytes. Microbes Infect 11(14–15):1140–1149. doi:10.1016/j.micinf.2009.08.009PubMedCentralPubMedCrossRefGoogle Scholar
  21. Golgher D, Gazzinelli RT (2004) Innate and acquired immunity in the pathogenesis of Chagas disease. Autoimmunity 37(5):399–409. doi:10.1080/08916930410001713115PubMedCrossRefGoogle Scholar
  22. Hotchkiss A, Robinson J, MacLean J, Feridooni T, Wafa K, Pasumarthi KB (2012) Role of D-type cyclins in heart development and disease. Can J Physiol Pharmacol 90(9):1197–1207. doi:10.1139/y2012-037PubMedCrossRefGoogle Scholar
  23. Hotez PJ, Dumonteil E, Woc-Colburn L, Serpa JA, Bezek S, Edwards MS, Hallmark CJ, Musselwhite LW, Flink BJ, Bottazzi ME (2012) Chagas disease: “the new HIV/AIDS of the Americas”. PLoS Negl Trop Dis 6(5):e1498. doi:10.1371/journal.pntd.0001498PubMedCentralPubMedCrossRefGoogle Scholar
  24. Junqueira C, Caetano B, Bartholomeu DC, Melo MB, Ropert C, Rodrigues MM, Gazzinelli RT (2010) The endless race between Trypanosoma cruzi and host immunity: lessons for and beyond Chagas disease. Expert Rev Mol Med 12:e29. doi:10.1017/S1462399410001560PubMedCrossRefGoogle Scholar
  25. Kropf SP (2011) Carlos Chagas: science, health, and national debate in Brazil. Lancet 377(9779):1740–1741PubMedCrossRefGoogle Scholar
  26. Kropf SP, Sa MR (2009) The discovery of Trypanosoma cruzi and Chagas disease (1908–1909): tropical medicine in Brazil. Hist Cienc Saude Manguinhos 16(Suppl 1):13–34PubMedCrossRefGoogle Scholar
  27. Lescure FX, Le Loup G, Freilij H, Develoux M, Paris L, Brutus L, Pialoux G (2010) Chagas disease: changes in knowledge and management. Lancet Infect Dis 10(8):556–570. doi:10.1016/S1473-3099(10)70098-0PubMedCrossRefGoogle Scholar
  28. Machado FS, Jelicks LA, Kirchhoff LV, Shirani J, Nagajyothi F, Mukherjee S, Nelson R, Coyle CM, Spray DC, de Carvalho AC, Guan F, Prado CM, Lisanti MP, Weiss LM, Montgomery SP, Tanowitz HB (2012) Chagas heart disease: report on recent developments. Cardiol Rev 20(2):53–65. doi:10.1097/CRD.0b013e31823efde2PubMedCentralPubMedGoogle Scholar
  29. Moncayo A (2010) Carlos Chagas: biographical sketch. Acta Trop 115(1–2):1–4. doi:10.1016/j.actatropica.2009.10.022PubMedCrossRefGoogle Scholar
  30. Moncayo A, Ortiz Yanine MI (2006) An update on Chagas disease (human American trypanosomiasis). Ann Trop Med Parasitol 100(8):663–677. doi:10.1179/136485906X112248PubMedCrossRefGoogle Scholar
  31. Mukherjee S, Belbin TJ, Spray DC, Iacobas DA, Weiss LM, Kitsis RN, Wittner M, Jelicks LA, Scherer PE, Ding A, Tanowitz HB (2003) Microarray analysis of changes in gene expression in a murine model of chronic chagasic cardiomyopathy. Parasitol Res 91(3):187–196. doi:10.1007/s00436-003-0937-zPubMedCrossRefGoogle Scholar
  32. Nagajyothi F, Desruisseaux M, Bouzahzah B, Weiss LM, Andrade Ddos S, Factor SM, Scherer PE, Albanese C, Lisanti MP, Tanowitz HB (2006) Cyclin and caveolin expression in an acute model of murine Chagasic myocarditis. Cell Cycle 5(1):107–112PubMedCrossRefGoogle Scholar
  33. Nogueira LG, Santos RH, Ianni BM, Fiorelli AI, Mairena EC, Benvenuti LA, Frade A, Donadi E, Dias F, Saba B, Wang HT, Fragata A, Sampaio M, Hirata MH, Buck P, Mady C, Bocchi EA, Stolf NA, Kalil J, Cunha-Neto E (2012) Myocardial chemokine expression and intensity of myocarditis in Chagas cardiomyopathy are controlled by polymorphisms in CXCL9 and CXCL10. PLoS Negl Trop Dis 6(10):e1867. doi:10.1371/journal.pntd.0001867PubMedCentralPubMedCrossRefGoogle Scholar
  34. Oliveira-Carvalho V, Carvalho VO, Silva MM, Guimaraes GV, Bocchi EA (2012) MicroRNAs: a new paradigm in the treatment and diagnosis of heart failure? Arq Bras Cardiol 98(4):362–369PubMedCrossRefGoogle Scholar
  35. Pays JF (2009) Chagas Carlos Justiniano Ribeiro (1879–1934). Bull Soc Pathol Exot 102(5):276–279PubMedGoogle Scholar
  36. Roveda JM (1967) Romana’s sign. Cole’s unilateral trypanosomiasic ophthalmia. Arch Oftalmol B Aires 42(1):1–4PubMedGoogle Scholar
  37. Siqueira-Batista R, Gomes AP, Rocas G, Cotta RM, Rubiao EC, Pissinatti A (2011) Chagas’s disease and deep ecology: the anti-vectorial fight in question. Cien Saude Colet 16(2):677–687PubMedCrossRefGoogle Scholar
  38. Soares MB, de Lima RS, Rocha LL, Vasconcelos JF, Rogatto SR, dos Santos RR, Iacobas S, Goldenberg RC, Iacobas DA, Tanowitz HB, de Carvalho AC, Spray DC (2010) Gene expression changes associated with myocarditis and fibrosis in hearts of mice with chronic chagasic cardiomyopathy. J Infect Dis 202(3):416–426. doi:10.1086/653481PubMedCentralPubMedCrossRefGoogle Scholar
  39. Vaena de Avalos S Blader IJ Fisher M Boothroyd JC Burleigh BA (2002) Immediate/early response to Trypanosoma cruzi infection involves minimal modulation of host cell transcription. J Biol Chem 277(1):639–644. doi:10.1074/jbc.M109037200PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ludmila Rodrigues P. Ferreira
    • 1
  • Edecio Cunha-Neto
    • 1
  1. 1.Laboratory of ImmunologyHeart Institute (Incor)São PauloBrazil

Personalised recommendations