Advertisement

Dissecting Tuberculosis Through Transcriptomic Studies

  • Rodrigo Ferracine Rodrigues
  • Rogério Silva Rosada
  • Thiago Malardo
  • Wendy Martin Rios
  • Celio Lopes Silva
Chapter

Abstract

Tuberculosis (TB) remains one of the biggest treats in public health, infecting approximately one-third of the human population and killing almost two million people per year. Prophylaxis and treatment methods present some weakness, and HIV co-infection and resistant strains add complexity to the situation, leading WHO to declare the disease a global emergence. To change this situation, new diagnostics, therapies and prevention strategies are urgently needed, but their development relies on biomarker availably. TB biomarker studies have focused especially on diagnostics, treatment efficacy and prophylaxis success by vaccination. Given the multifactorial complexity of this disease, biosignatures are considered more adequate in TB than isolated markers. Standardizations (including assays, definitions and protocols) could accelerate biomarkers research once it would reduce heterogeneous datasets. Thus, specific databanks and integrated platforms of studies are precious resources to conduct broad research. Consequently, to reach the objective of defining TB biosignatures will demand tools from other areas, such as bioinformatics.

Keywords

Transcriptomic Study Mycobacterium Tuberculosis Complex Leaderless Transcript Resistant Mouse Strain Increase Network Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abu-Raddad LJ, Sabatelli L, Achterberg JT, Sugimoto JD, Longini IM, Dye C, Halloran ME (2009) Epidemiological benefits of more-effective tuberculosis vaccines, drugs, and diagnostics. Proc Natl Acad Sci USA 106:13980–13985PubMedCentralPubMedCrossRefGoogle Scholar
  2. Aranday Cortes E Kaveh D Nunez-Garcia J Hogarth PJ Vordermeier HM (2010) Mycobacterium bovis-BCG vaccination induces specific pulmonary transcriptome biosignatures in mice. PLoS One 5:e11319CrossRefGoogle Scholar
  3. Ayles H, Schaap A, Nota A, Sismanidis C, Tembwe R, De Haas P, Muyoyeta M, Beyers N, Peter Godfrey-Faussett for the ZAMSTAR Study Team (2009) Prevalence of tuberculosis, HIV and respiratory symptoms in two Zambian communities: implications for tuberculosis control in the era of HIV. PLoS One 4:e5602CrossRefGoogle Scholar
  4. Berry MP, Graham CM, Mcnab FW, Xu Z, Bloch SA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ, Quinn C, Blankenship D, Dhawan R, Cush JJ, Mejias A, Ramilo O, Kon OM, Pascual V, Banchereau J, Chaussabel D, O’garra A (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466:973–977PubMedCentralPubMedCrossRefGoogle Scholar
  5. Biomakers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  6. Bloom CI, Graham CM, Berry MP, Wilkinson KA, Oni T, Rozakeas F, Xu Z, Rossello-Urgell J, Chaussabel D, Banchereau J, Pascual V, Lipman M, Wilkinson RJ, O'garra A (2012) Detectable changes in the blood transcriptome are present after two weeks of antituberculosis therapy. PLoS One 7:e46191CrossRefGoogle Scholar
  7. Blumenthal A, Nagalingam G, Huch JH, Walker L, Guillemin GJ, Smythe GA, Ehrt S, Britton WJ, Saunders BM (2012) M. tuberculosis induces potent activation of IDO–1, but this is not essential for the immunological control of infection. PLoS One 7:e37314CrossRefGoogle Scholar
  8. Bonde BK, Beste DJ, Laing E, Kierzek AM, Mcfadden J (2011) Differential producibility analysis (DPA) of transcriptomic data with metabolic networks: deconstructing the metabolic response of M. tuberculosis. PLoS Comput Biol 7:e1002060PubMedCentralPubMedCrossRefGoogle Scholar
  9. Boshoff HI, Myers TG, Copp BR, MCNEIL MR, WILSON MA, BARRY CE (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279:40174–40184PubMedCrossRefGoogle Scholar
  10. Capuano SV 3rd, Croix DA, Pawar S, Zinovik A, Myers A, Lin PL, Bissel S, Fuhrman C, Klein E, Flynn JL (2003) Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect Immun 71:5831–5844PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chatterjee A, Saranath D, Bhatter P, Mistry N (2013) Global transcriptional profiling of longitudinal clinical isolates of Mycobacterium tuberculosis exhibiting rapid accumulation of drug resistance. PLoS One 8:e54717PubMedCentralPubMedCrossRefGoogle Scholar
  12. Chaussabel D, Allman W, Mejias A, Chung W, Bennett L, Ramilo O, Pascual V, Palucka AK, Banchereau J (2005) Analysis of significance patterns identifies ubiquitous and disease-specific gene-expression signatures in patient peripheral blood leukocytes. Ann N Y Acad Sci 1062:146–154PubMedCrossRefGoogle Scholar
  13. Chaussabel D, Quinn C, Shen J, Patel P, Glaser C, Baldwin N, Stichweh D, Blankenship D, Li L, Munagala I, Bennett L, Allantaz F, Mejias A, Ardura M, Kaizer E, Monnet L, Allman W, Randall H, Johnson D, Lanier A, Punaro M, Wittkowski KM, White P, Fay J, Klintmalm G, Ramilo O, Palucka AK, Banchereau J, Pascual V (2008) A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity 29:150–164PubMedCentralPubMedCrossRefGoogle Scholar
  14. Cliff JM, Lee JS, Constantinou N, Cho JE, Clark TG, Ronacher K, King EC, Lukey PT, DuncaN K, Van Helden PD, Walzl G, Dockrell HM (2013) Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response. J Infect Dis 207:18–29PubMedCrossRefGoogle Scholar
  15. Cole ST, Brosch R, Parkhill J, GARNIER T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, krogh A, Mclean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544PubMedCrossRefGoogle Scholar
  16. Cortes T, Schubert OT, Rose G, Arnvig KB, Comas I, Aebersold R, Young DB (2013) Genome-wide mapping of transcriptional start sites defines an extensive leaderless transcriptome in Mycobacterium tuberculosis. Cell Rep 5(4):1121–1131PubMedCentralPubMedCrossRefGoogle Scholar
  17. de Jong BC Antonio M Gagneux S (2010) Mycobacterium africanum–review of an important cause of human tuberculosis in West Africa. PLoS Negl Trop Dis 4:e744PubMedCentralPubMedCrossRefGoogle Scholar
  18. de Knegt GJ Bruning O ten Kate MT de Jong M van Belkum A Endtz HP Breit TM Bakker-Woudenberg IA de Steenwinkel JE (2013) Rifampicin-induced transcriptome response in rifampicin-resistant Mycobacterium tuberculosis. Tuberculosis (Edinb) 93:96–101CrossRefGoogle Scholar
  19. Domenech P, Barry CE, Cole ST (2001) Mycobacterium tuberculosis in the post-genomic age. Curr Opin Microbiol 4:28–34PubMedCrossRefGoogle Scholar
  20. Dorhoi A, Iannaccone M, Farinacci M, Faé KC, Schreiber J, Moura-alves P, Nouailles G, Mollenkopf HJ, Oberbeck-Müller D, Jörg S, Heinemann E, Hahnke K, Löwe D, Del Nonno F, Goletti D, Capparelli R, Kaufmann SH (2013) MicroRNA–223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J Clin Invest 123:4836–4848PubMedCentralPubMedCrossRefGoogle Scholar
  21. Dutta NK, Mehra S, Martinez AN, Alvarez X, Renner NA, Morici LA, Pahar B, Maclean AG, Lackner AA, Kaushal D (2012) The stress-response factor SigH modulates the interaction between Mycobacterium tuberculosis and host phagocytes. PLoS One 7:e28958PubMedCentralPubMedCrossRefGoogle Scholar
  22. Eum SY, Kong JH, Hong MS, Lee YJ, Kim JH, Hwang SH, Cho SN, Via LE, Barry CE 3rd (2010) Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 137:122–128PubMedCentralPubMedCrossRefGoogle Scholar
  23. Fan X, Tang X, Yan J, Xie J (2013) Identification of idiosyncratic Mycobacterium tuberculosis ribosomal protein subunits with implications in extraribosomal function, persistence, and drug resistance based on transcriptome data. J Biomol Struct Dyn 32(10):1546–1551PubMedCrossRefGoogle Scholar
  24. Flynn JL, Capuano SV, Croix D, Pawar S, Myers A, Zinovik A, Klein E (2003) Non-human primates: a model for tuberculosis research. Tuberculosis (Edinb) 83:116–118CrossRefGoogle Scholar
  25. Fu Y, Yi Z, Wu X, Li J, Xu F (2011) Circulating microRNAs in patients with active pulmonary tuberculosis. J Clin Microbiol 49:4246–4251PubMedCentralPubMedCrossRefGoogle Scholar
  26. Gonzalez-Juarrero M, Kingry LC, Ordway DJ, Henao-Tamayo M, Harton M, Basaraba RJ, Hanneman WH, Orme IM, Slayden RA (2009) Immune response to Mycobacterium tuberculosis and identification of molecular markers of disease. Am J Respir Cell Mol Biol 40:398–409PubMedCentralPubMedCrossRefGoogle Scholar
  27. Graham JE, Clark-Curtiss JE (1999) Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci U S A 96:11554–11559PubMedCentralPubMedCrossRefGoogle Scholar
  28. Guo W, Li JT, Pan X, Wei L, Wu JY (2010) Candidate Mycobacterium tuberculosis genes targeted by human microRNAs. Protein Cell 1:419–421PubMedCrossRefGoogle Scholar
  29. Gupta UD, Katoch VM (2005) Animal models of tuberculosis. Tuberculosis (Edinb) 85:277–293CrossRefGoogle Scholar
  30. Gupta UD, Katoch VM (2009) Animal models of tuberculosis for vaccine development. Indian J Med Res 129:11–18PubMedGoogle Scholar
  31. Hanson C, Floyd K, Weil D (2006) Tuberculosis in the poverty alleviation agenda. In: Raviglione M (ed) TB: a comprehensive international approach. Informa Healthcare, New YorkGoogle Scholar
  32. Hoa NB, Sy DN, Nhung NV, Tiemersma EW, Borgdorff MW, Cobelens FG (2010) National survey of tuberculosis prevalence in Viet Nam. Bull World Health Organ 88:273–280PubMedCentralPubMedCrossRefGoogle Scholar
  33. Homolka S, Niemann S, Russell DG, Rohde KH (2010) Functional genetic diversity among Mycobacterium tuberculosis complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival. PLoS Pathog 6:e1000988CrossRefGoogle Scholar
  34. Huang D, Qiu L, Wang R, Lai X, Du G, Seghal P, Shen Y, Shao L, Halliday L, Fortman J, Shen L, Letvin NL, Chen ZW (2007) Immune gene networks of mycobacterial vaccine-elicited cellular responses and immunity. J Infect Dis 195:55–69PubMedCentralPubMedCrossRefGoogle Scholar
  35. Jacobsen M, Repsilber D, Gutschmidt A, Neher A, Feldmann K, Mollenkopf HJ, Ziegler A, Kaufmann SH (2007) Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. J Mol Med (Berl) 85:613–621CrossRefGoogle Scholar
  36. Jacobsen M, Mattow J, Repsilber D, Kaufmann SH (2008) Novel strategies to identify biomarkers in tuberculosis. Biol Chem 389:487–495PubMedCrossRefGoogle Scholar
  37. John TJ, John SM (2009) Paradigm shift for tuberculosis control in high prevalence countries. Trop Med Int Health 14:1428–1430PubMedCrossRefGoogle Scholar
  38. John SH, Kenneth J, Gandhe AS (2012) Host biomarkers of clinical relevance in tuberculosis: review of gene and protein expression studies. Biomarkers 17:1–8PubMedCrossRefGoogle Scholar
  39. Kang DD, Lin Y, Moreno JR, Randall TD, Khader SA (2011) Profiling early lung immune responses in the mouse model of tuberculosis. PLoS One 6:e16161PubMedCentralPubMedCrossRefGoogle Scholar
  40. Kaushal D, Schroeder BG, Tyagi S, Yoshimatsu T, Scott C, Ko C, Carpenter L, Mehrotra J, Manabe YC, Fleischmann RD, Bishai WR (2002) Reduced immunopathology and mortality despite tissue persistence in a Mycobacterium tuberculosis mutant lacking alternative sigma factor, SigH. Proc Natl Acad Sci U S A 99:8330–8335PubMedCentralPubMedCrossRefGoogle Scholar
  41. Keren I, Minami S, Rubin E, Lewis K (2011) Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. MBio 2:e00100–11CrossRefGoogle Scholar
  42. Khan KH (2013) DNA vaccines: roles against diseases. Germs 3:26–35PubMedCentralPubMedCrossRefGoogle Scholar
  43. Kita Y, Tanaka T, Yoshida S, Ohara N, Kaneda Y, Kuwayama S, Muraki Y, Kanamaru N, Hashimoto S, Takai H, Okada C, Fukunaga Y, Sakaguchi Y, Furukawa I, Yamada K, inoue Y, Takemoto Y, Naito M, Yamada T, Matsumoto M, Mcmurray DN, Cruz EC, Tan EV, Abalos RM, Burgos JA, Gelber R, Skeiky Y, Reed S, Sakatani M, Okada M (2005) Novel recombinant BCG and DNA-vaccination against tuberculosis in a cynomolgus monkey model. Vaccine 23:2132–2135PubMedCrossRefGoogle Scholar
  44. Kumar R, Halder P, Sahu SK, Kumar M, Kumari M, Jana K, Ghosh Z, Sharma P, Kundu M, Basu J (2012) Identification of a novel role of ESAT–6-dependent miR–155 induction during infection of macrophages with Mycobacterium tuberculosis. Cell Microbiol 14:1620–1631PubMedCrossRefGoogle Scholar
  45. Lesho E, Forestiero FJ, Hirata MH, Hirata RD, Cecon L, Melo FF, Paik SH, Murata Y, Ferguson EW, Wang Z, Ooi GT (2011) Transcriptional responses of host peripheral blood cells to tuberculosis infection. Tuberculosis (Edinb) 91:390–399CrossRefGoogle Scholar
  46. Liu Y, Wang X, Jiang J, Cao Z, Yang B, Cheng X (2011) Modulation of T cell cytokine production by miR–144* with elevated expression in patients with pulmonary tuberculosis. Mol Immunol 48:1084–1090PubMedCrossRefGoogle Scholar
  47. Lönnroth K, Castro KG, Chakaya JM, Chauhan LS, Floyd K, Glaziou P, Raviglione MC (2010) Tuberculosis control and elimination 2010–50: cure, care, and social development. Lancet 375:1814–1829PubMedCrossRefGoogle Scholar
  48. Lopez AD, Mathers CD, Ezzati M, Murray CJL, Jamison DT (2006) Global burden of disease and risk factors. Oxford University Press and The World Bank, New YorkCrossRefGoogle Scholar
  49. Lowe DM, Redford PS, Wilkinson RJ, O’garra A, Martineau AR (2012) Neutrophils in tuberculosis: friend or foe? Trends Immunol 33:14–25PubMedCrossRefGoogle Scholar
  50. Lowrie DB, Silva CL, Colston MJ, Ragno S, Tascon RE (1997) Protection against tuberculosis by a plasmid DNA vaccine. Vaccine 15:834–838PubMedCrossRefGoogle Scholar
  51. Lowrie DB, Tascon RE, Bonato VL, Lima VM, Faccioli LH, Stavropoulos E, Colston MJ, Hewinson RG, Moelling K, Silva CL (1999) Therapy of tuberculosis in mice by DNA vaccination. Nature 400:269–271PubMedCrossRefGoogle Scholar
  52. Maertzdorf J, Ota M, Repsilber D, Mollenkopf HJ, Weiner J, Hill PC, Kaufmann SH (2011a) Functional correlations of pathogenesis-driven gene expression signatures in tuberculosis. PLoS One 6:e26938Google Scholar
  53. Maertzdorf J, Repsilber D, Parida SK, Stanley K, Roberts T, Black G, Walzl G, Kaufmann SH (2011b) Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun 12:15–22Google Scholar
  54. Maertzdorf J, Weiner J 3rd, Kaufmann SH (2012) Enabling biomarkers for tuberculosis control. Int J Tuberc Lung Dis 16:1140–8PubMedCrossRefGoogle Scholar
  55. Mcmurray DN (2000) A nonhuman primate model for preclinical testing of new tuberculosis vaccines. Clin Infect Dis 30(3):210–212Google Scholar
  56. Mcnerney R, Daley P (2011) Towards a point-of-care test for active tuberculosis: obstacles and opportunities. Nat Rev Microbiol 9:204–213PubMedCrossRefGoogle Scholar
  57. Mcnerney R, Maeurer M, Abubakar I, Marais B, Mchugh TD, Ford N, Weyer K, Lawn S, Grobusch MP, Memish Z, Squire SB, Pantaleo G, Chakaya J, Casenghi M, Migliori GB, Mwaba P, Zijenah L, Hoelscher M, Cox H, Swaminathan S, Kim PS, Schito M, Harari A, Bates M, Schwank S, O’grady J, Pletschette M, Ditui L, Atun R, Zumla A (2012) Tuberculosis diagnostics and biomarkers: needs, challenges, recent advances, and opportunities. J Infect Dis 205(2):147–158CrossRefGoogle Scholar
  58. Mehra, S, Kaushal D (2009) Functional genomics reveals extended roles of the Mycobacterium tuberculosis stress response factor sigmaH. J Bacteriol 191:3965–3980PubMedCentralPubMedCrossRefGoogle Scholar
  59. Mehra S, Pahar B, Dutta NK, Conerly CN, Philippi-Falkenstein K, Alvarez X, Kaushal D (2010) Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. PLoS One 5:e12266PubMedCentralPubMedCrossRefGoogle Scholar
  60. Mehra S, Golden NA, Stuckey K, Didier PJ, Doyle LA, Russell-Lodrigue KE, Sugimoto C, Hasegawa A, Sivasubramani SK, Roy CJ, Alvarez X, Kuroda MJ, Blanchard JL, Lackner AA, Kaushal D (2012) The Mycobacterium tuberculosis stress response factor SigH is required for bacterial burden as well as immunopathology in primate lungs. J Infect Dis 205:1203–1213PubMedCentralPubMedCrossRefGoogle Scholar
  61. Mehra S, Alvarez X, Didier PJ, Doyle LA, Blanchard JL, Lackner AA, Kaushal D (2013) Granuloma correlates of protection against tuberculosis and mechanisms of immune modulation by Mycobacterium tuberculosis. J Infect Dis 207:1115–1127PubMedCentralPubMedCrossRefGoogle Scholar
  62. Miller TL, Mcnabb SJ, Hilsenrath P, Pasipanodya J, Weis SE (2009) Personal and societal health quality lost to tuberculosis. PLoS One 4:e5080PubMedCentralPubMedCrossRefGoogle Scholar
  63. Mistry R, Cliff JM, Clayton CL, Beyers N, Mohamed YS, Wilson PA, Dockrell HM, Wallace DM, van Helden PD, Duncan K, Lukey PT (2007) Gene-expression patterns in whole blood identify subjects at risk for recurrent tuberculosis. J Infect Dis 195:357–365PubMedCrossRefGoogle Scholar
  64. Mollenkopf HJ, Hahnke K, Kaufmann SH (2006) Transcriptional responses in mouse lungs induced by vaccination with Mycobacterium bovis BCG and infection with Mycobacterium tuberculosis. Microbes Infect 8:136–144PubMedCrossRefGoogle Scholar
  65. Oʼgarra A, Redford PS, Mcnab FW, Bloom CI, Wilkinson RJ, Berry MP (2013) The immune response in tuberculosis. Annu Rev Immunol 31:475–527PubMedCrossRefGoogle Scholar
  66. Ottenhoff TH, Dass RH, Yang N, Zhang MM, Wong HE, Sahiratmadja E, Khor CC, Alisjahbana B, van Crevel R, Marzuki S, Seielstad M, van de Vosse E, Hibberd ML (2012a) Genome-wide expression profiling identifies type 1 interferon response pathways in active tuberculosis. PLoS One 7:e45839Google Scholar
  67. Ottenhoff TH, Ellner JJ, Kaufmann SH (2012b) Ten challenges for TB biomarkers. Tuberculosis (Edinb) 92(1):17–20Google Scholar
  68. Parida SK, Kaufmann SH (2010) The quest for biomarkers in tuberculosis. Drug Discov Today 15:148–157PubMedCrossRefGoogle Scholar
  69. Puniya BL, Kulshreshtha D, Verma SP, Kumar S, Ramachandran S (2013) Integrated gene co-expression network analysis in the growth phase of Mycobacterium tuberculosis reveals new potential drug targets. Mol Biosyst 9:2798–2815PubMedCrossRefGoogle Scholar
  70. Qi Y, Cui L, Ge Y, Shi Z, Zhao K, Guo X, Yang D, Yu H, Shan Y, Zhou M, Wang H, Lu Z (2012) Altered serum microRNAs as biomarkers for the early diagnosis of pulmonary tuberculosis infection. BMC Infect Dis 12:384PubMedCentralPubMedCrossRefGoogle Scholar
  71. Rajaram MV, Ni B, Morris JD, Brooks MN, Carlson TK, Bakthavachalu B, Schoenberg DR, Torrelles JB, Schlesinger LS (2011) Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR–125b. Proc Natl Acad Sci U S A 108:17408–17413PubMedCentralPubMedCrossRefGoogle Scholar
  72. Reddy TB, Riley R, Wymore F, Montgomery P, Decaprio D, Engels R, Gellesch M, Hubble J, Jen D, Jin H, Koehrsen M, Larson L, Mao M, Nitzberg M, Sisk P, Stolte C, Weiner B, White J, Zachariah ZK, Sherlock G, Galagan JE, Ball CA, Schoolnik GK (2009) TB database: an integrated platform for tuberculosis research. Nucleic Acids Res 37:499–508CrossRefGoogle Scholar
  73. Rodgers A, Whitmore KM, Walker KB (2006) Potential correlates of BCG induced protection against tuberculosis detected in a mouse aerosol model using gene expression profiling. Tuberculosis (Edinb) 86:255–262CrossRefGoogle Scholar
  74. Rohde KH, Abramovitch RB, Russell DG (2007) Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe 2:352–364PubMedCrossRefGoogle Scholar
  75. Rosada RS, Rodrigues RF, Frantz FG, Arnoldi FGC, Torre LG, Silva CL (2014) TB Vaccines: state of the Art and Progresses. In: Giese M (ed) Molecular vaccines: from prophylaxis to therapy. Springer: ViennaGoogle Scholar
  76. Roth AE, Stensballe LG, Garly ML, Aaby P (2006) Beneficial non-targeted effects of BCG–ethical implications for the coming introduction of new TB vaccines. Tuberculosis (Edinb) 86:397–403CrossRefGoogle Scholar
  77. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK (2003) Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. J Exp Med 198:693–704PubMedCentralPubMedCrossRefGoogle Scholar
  78. Shepelkova G, Pommerenke C, Alberts R, Geffers R, Evstifeev V, Apt A, Schughart K, Wilk E (2013) Analysis of the lung transcriptome in Mycobacterium tuberculosis-infected mice reveals major differences in immune response pathways between TB-susceptible and resistant hosts. Tuberculosis (Edinb) 93:263–269CrossRefGoogle Scholar
  79. Sierra VG (2006) Is a new tuberculosis vaccine necessary and feasible? A Cuban opinion. Tuberculosis (Edinb) 86:169–178CrossRefGoogle Scholar
  80. Silva CL, Bonato VL, Coelho-Castelo AA, De Souza AO, Santos SA, Lima KM, Faccioli LH, Rodrigues JM (2005) Immunotherapy with plasmid DNA encoding mycobacterial hsp65 in association with chemotherapy is a more rapid and efficient form of treatment for tuberculosis in mice. Gene Ther 12:281–287PubMedCrossRefGoogle Scholar
  81. Singh PK, Singh AV, Chauhan DS (2013a) Current understanding on micro RNAs and its regulation in response to Mycobacterial infections. J Biomed Sci 20:14Google Scholar
  82. Singh Y, Kaul V, Mehra A, Chatterjee S, Tousif S, Dwivedi VP, Suar M, Van Kaer L, Bishai WR, Das G (2013b) Mycobacterium tuberculosis controls microRNA–99b (miR–99b) expression in infected murine dendritic cells to modulate host immunity. J Biol Chem 288:5056–5061Google Scholar
  83. Skvortsov TA, Ignatov DV, Majorov KB, Apt AS, Azhikina TL (2013) Mycobacterium tuberculosis transcriptome profiling in mice with genetically different susceptibility to tuberculosis. Acta Naturae 5:62–69PubMedCentralPubMedGoogle Scholar
  84. Smith I (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16:463–496PubMedCentralPubMedCrossRefGoogle Scholar
  85. Sudre P, ten Dam G, Kochi A (1992) Tuberculosis: a global overview of the situation today. Bull World Health Organ 70:149–159PubMedCentralPubMedGoogle Scholar
  86. Tudó G, Laing K, Mitchison DA, Butcher PD, Waddell SJ (2010) Examining the basis of isoniazid tolerance in nonreplicating Mycobacterium tuberculosis using transcriptional profiling. Future Med Chem 2:1371–1383PubMedCrossRefGoogle Scholar
  87. Waddell SJ, Stabler RA, Laing K, Kremer L, Reynolds RC, Besra GS (2004) The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis (Edinb) 84:263–274CrossRefGoogle Scholar
  88. Wallis RS, Pai M, Menzies D, Doherty TM, Walzl G, Perkins MD, Zumla A (2010) Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. Lancet 375:1920–1937PubMedCrossRefGoogle Scholar
  89. Walzl G, Ronacher K, Hanekom W, Scriba TJ, Zumla A (2011) Immunological biomarkers of tuberculosis. Nat Rev Immunol 11:343–354PubMedCrossRefGoogle Scholar
  90. Wei J, Guo N, Liang J, Yuan P, Shi Q, Tang X, Yu L (2013) DNA microarray gene expression profile of Mycobacterium tuberculosis when exposed to osthole. Pol J Microbiol 62:23–30PubMedGoogle Scholar
  91. WHO (2008) In tuberculosis control, the burden of tuberculosis: economic burden. http://www.who.int/trade/distance_learning/gpgh/gpgh3/en/index7.html. Accessed Jan 2014
  92. WHO (2010) Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 global report on surveillance and response. http://www.who.int/tb/features_archive/m_xdrtb_facts/en/. Accessed Jan 2014
  93. WHO (2013) Global tuberculosis report 2013. http://www.who.int/tb/publications/global_report/en/index.html. Accessed Jan 2014
  94. Wilson M, DeRisi J, Kristensen HH, Imboden P, Rane S, Brown PO, Schoolnik GK (1999) Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci U S A 96:12833–12838PubMedCentralPubMedCrossRefGoogle Scholar
  95. Wu B, Huang C, Garcia L, Ponce de Leon A, Osornio JS, Bobadilla-del-Valle M, Ferreira L, Canizales S, Small P, Kato-Maeda M, Krensky AM, Clayberger C (2007) Unique gene expression profiles in infants vaccinated with different strains of Mycobacterium bovis Bacille Calmette-Guerin. Infect Immun 75:3658–3664PubMedCentralPubMedCrossRefGoogle Scholar
  96. Zárate-Bladés CR, Bonato VL, da Silveira EL, Oliveira e Paula M, Junta CM, Sandrin-Garcia P, Fachin AL, Mello SS, Cardoso RS, Galetti FC, Coelho-Castelo AA, Ramos SG, Donadi EA, Sakamoto-Hojo ET, Passos GA, Silva CL (2009) Comprehensive gene expression profiling in lungs of mice infected with Mycobacterium tuberculosis following DNAhsp65 immunotherapy. J Gene Med 11:66–78PubMedCrossRefGoogle Scholar
  97. Zarate-Blades CR, Silva CL, Passos GA (2011) The impact of transcriptomics on the fight against tuberculosis: focus on biomarkers, BCG vaccination, and immunotherapy. Clin Dev Immunol 2011:192630PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rodrigo Ferracine Rodrigues
    • 1
  • Rogério Silva Rosada
    • 1
  • Thiago Malardo
    • 1
  • Wendy Martin Rios
    • 1
  • Celio Lopes Silva
    • 1
  1. 1.Center for Tuberculosis Research, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations