Advertisement

Transcriptome Profiling in Experimental Inflammatory Arthritis

  • Olga Martinez Ibañez
  • José Ricardo Jensen
  • Marcelo De Franco
Chapter

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that affects 0.5 to 1 % of the human population. Gene expression profiling studies of tissues from RA patients showed marked variation in gene expression profiles that allowed identifying distinct molecular disease mechanisms involved in RA pathology. The relative contribution of the different mechanisms may vary among patients and in different stages of disease. Thus, the broad goals of expression profiling in RA are the improvement of understanding of the pathogenic mechanisms underlying RA, the identification of disease subsets and new drug targets and the assessment of disease activity, such as: responsiveness to therapy, overall disease severity and organ specific risk and development of new diagnostic tests. Genetic and environmental factors contribute to the development of this disease and numerous studies have indicated the participation of the major histocompatibility complex (MHC) class II alleles and non-MHC genes. Therefore, identification of the major roles of the participating cells and of candidate genes has been an important subject of study to the understanding of RA pathogenesis.

Keywords

Rheumatoid Arthritis Major Histocompatibility Complex Major Histocompatibility Complex Class Human Rheumatoid Arthritis Rheumatoid Arthritis Susceptibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adarichev VA, Valdez JC, Bardos T et al (2003) Combined autoimmune models of arthritis reveal shared and independent qualitative (binary) and quantitative trait loci. J Immunol 170(5):2283–2292PubMedCrossRefGoogle Scholar
  2. Araujo LM, Ribeiro OG, Siqueira M et al (1998) Innate resistance to infection by intracellular bacterial pathogens differs in mice selected for maximal or minimal acute inflammatory response. Eur J Immunol 28(9):2913–2920PubMedCrossRefGoogle Scholar
  3. Asquith DL, Miller AM, Mcinnes IB et al (2009) Animal models of rheumatoid arthritis. Eur J Immunol 39(8):2040–2044PubMedCrossRefGoogle Scholar
  4. Ates O, Dalyan L, Musellim B et al (2009) NRAMP1 (SLC11A1) gene polymorphisms that correlate with autoimmune versus infectious disease susceptibility in tuberculosis and rheumatoid arthritis. Int J Immunogenet 36(1):15–19PubMedCrossRefGoogle Scholar
  5. Baechler EC, Batliwalla FM, Reed AM et al (2006) Gene expression profiling in human autoimmunity. Immunol Rev 210:120–137PubMedCrossRefGoogle Scholar
  6. Besenyei T, Kadar A, Tryniszewska B et al (2012) Non-MHC risk alleles in rheumatoid arthritis and in the syntenic chromosome regions of corresponding animal models. Clin Dev Immunol. doi:10.1155/2012/284751Google Scholar
  7. Biozzi G, Ribeiro OG, Saran A et al (1998) Effect of genetic modification of acute inflammatory responsiveness on tumorigenesis in the mouse. Carcinogenesis 19(2):337–346PubMedCrossRefGoogle Scholar
  8. Cho YG, Cho ML, Min SY et al (2007) Type II collagen autoimmunity in a mouse model of human rheumatoid arthritis. Autoimmun Rev 7(1):65–70PubMedCrossRefGoogle Scholar
  9. De Franco M, Colombo F, Galvan A et al (2010) Transcriptome of normal lung distinguishes mouse lines with different susceptibility to inflammation and to lung tumorigenesis. Cancer Lett 294(2):187–194CrossRefGoogle Scholar
  10. De Franco M, Peters LC, Correa MA et al (2014) Pristane-induced arthritis loci interact with the Slc11a1 gene to determine susceptibility in mice selected for high inflammation. PLoS One 9(2):e88302PubMedCentralPubMedCrossRefGoogle Scholar
  11. Donate PB, Fornari TA, Macedo C et al (2013) T cell post-transcriptional miRNA-mRNA interaction networks identify targets associated with susceptibility/resistance to collagen-induced arthritis. PLoS One 8(1):e54803PubMedCentralPubMedCrossRefGoogle Scholar
  12. Filer A, Raza K, Salmon M et al (2008) The role of chemokines in leucocyte-stromal interactions in rheumatoid arthritis. Front Biosci 13:2674–2685PubMedCentralPubMedCrossRefGoogle Scholar
  13. Fujikado N, Saijo S, Iwakura Y (2006) Identification of arthritis-related gene clusters by microarray analysis of two independent mouse models for rheumatoid arthritis. Arthritis Res Ther 8(4):100–125CrossRefGoogle Scholar
  14. Galvan A, Vorraro F, Cabrera W et al (2011) Association study by genetic clustering detects multiple inflammatory response loci in non-inbred mice. Genes Immun 12(5):390–394PubMedCrossRefGoogle Scholar
  15. Glant TT, Finnegan A, Mikecz K (2003) Proteoglycan-induced arthritis: immune regulation, cellular mechanisms, and genetics. Crit Rev Immunol 23(3):199–250PubMedCrossRefGoogle Scholar
  16. Glant TT, Adarichev VA, Nesterovitch AB et al (2004) Disease-associated qualitative and quantitative trait loci in proteoglycan-induced arthritis and collagen-induced arthritis. Am J Med Sci 327(4):188–195PubMedCrossRefGoogle Scholar
  17. Hirose J, Tanaka S (2011) Animal models for bone and joint disease. CIA, CAIA model. Clin Calcium 21(2):253–259PubMedGoogle Scholar
  18. Ibanez OM, Stiffel C, Ribeiro OG et al (1992) Genetics of nonspecific immunity: I. Bidirectional selective breeding of lines of mice endowed with maximal or minimal inflammatory responsiveness. Eur J Immunol 22(10):2555–2563PubMedCrossRefGoogle Scholar
  19. Ibrahim SM, Yu X (2006) Dissecting the genetic basis of rheumatoid arthritis in mouse models. Curr Pharm Des 12(29):3753–3759PubMedCrossRefGoogle Scholar
  20. Ibrahim SM, Mix E, Bottcher T et al. (2001) Gene expression profiling of the nervous system in murine experimental autoimmune encephalomyelitis. Brain 124:1927–1938PubMedCrossRefGoogle Scholar
  21. Ibrahim SM, Koczan D, Thiesen HJ (2002) Gene-expression profile of collagen-induced arthritis. J Autoimmun 18(2):159–167PubMedCrossRefGoogle Scholar
  22. Jarvis JN, Frank MB (2010) Functional genomics and rheumatoid arthritis: where have we been and where should we go? Genome Med 2(7):44–59PubMedCentralPubMedCrossRefGoogle Scholar
  23. Jensen JR, Peters LC, Borrego A et al (2006) Involvement of antibody production quantitative trait loci in the susceptibility to pristane-induced arthritis in the mouse. Genes Immun 7(1):44–50PubMedCrossRefGoogle Scholar
  24. Kannan K, Ortmann RA, Kimpel D (2005) Animal models of rheumatoid arthritis and their relevance to human disease. Pathophysiology 12(3):167–181PubMedCrossRefGoogle Scholar
  25. Kobezda T, Ghassemi-Nejad S, Mikecz K et al (2014) Of mice and men: how animal models advance our understanding of T-cell function in RA. Nat Rev Rheumatol 10(3):160–170PubMedCentralPubMedCrossRefGoogle Scholar
  26. Kurko J, Besenyei T, Laki J et al (2013) Genetics of rheumatoid arthritis—a comprehensive review. Clin Rev Allergy Immunol 45(2):170–179PubMedCentralPubMedCrossRefGoogle Scholar
  27. Li P, Schwarz EM (2003) The TNF-alpha transgenic mouse model of inflammatory arthritis. Springer Semin Immunopathol 25(1):19–33PubMedCrossRefGoogle Scholar
  28. Li J, Hsu HC, Mountz JD (2012) Managing macrophages in rheumatoid arthritis by reform or removal. Curr Rheumatol Rep 14(5):445–454PubMedCentralPubMedCrossRefGoogle Scholar
  29. Lubberts E, Koenders MI, Van Den Berg WB (2005) The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther 7(1):29–37PubMedCentralPubMedCrossRefGoogle Scholar
  30. Ma Y, Miller JC, Crandall H et al (2009) Interval-specific congenic lines reveal quantitative trait Loci with penetrant lyme arthritis phenotypes on chromosomes 5, 11, and 12. Infect Immun 77(8):3302–3311PubMedCentralPubMedCrossRefGoogle Scholar
  31. Patten C, Bush K, Rioja I et al (2004) Characterization of pristane-induced arthritis, a murine model of chronic disease: response to antirheumatic agents, expression of joint cytokines, and immunopathology. Arthritis Rheum 50(10):3334–3345PubMedCrossRefGoogle Scholar
  32. Peters LC, Jensen JR, Borrego A et al (2007) Slc11a1 (formerly NRAMP1) gene modulates both acute inflammatory reactions and pristane-induced arthritis in mice. Genes Immun 8(1):51–56PubMedCrossRefGoogle Scholar
  33. Potter M, Wax JS (1981) Genetics of susceptibility to pristane-induced plasmacytomas in BALB/cAn: reduced susceptibility in BALB/cJ with a brief description of pristane-induced arthritis. J Immunol 127(4):1591–1595PubMedGoogle Scholar
  34. Roper RJ, Weis JJ, Mccracken BA et al (2001) Genetic control of susceptibility to experimental Lyme arthritis is polygenic and exhibits consistent linkage to multiple loci on chromosome 5 in four independent mouse crosses. Genes Immun 2(7):388–397PubMedCrossRefGoogle Scholar
  35. Runstadler JA, Saila H, Savolainen A et al (2005) Association of SLC11A1 (NRAMP1) with persistent oligoarticular and polyarticular rheumatoid factor-negative juvenile idiopathic arthritis in Finnish patients: haplotype analysis in Finnish families. Arthritis Rheum 52(1):247–256PubMedCrossRefGoogle Scholar
  36. Silman AJ, Pearson JE (2002) Epidemiology and genetics of rheumatoid arthritis. Arthritis Res 4 (Suppl 3):S265–S272CrossRefGoogle Scholar
  37. Silva GL, Junta CM, Sakamoto-Hojo ET et al (2009) Genetic susceptibility loci in rheumatoid arthritis establish transcriptional regulatory networks with other genes. Ann N Y Acad Sci 1173:521–537PubMedCrossRefGoogle Scholar
  38. Stasiuk LM, Ghoraishian M, Elson CJ et al (1997) Pristane-induced arthritis is CD4+ T-cell dependent. Immunology 90(1):81–86PubMedCentralPubMedCrossRefGoogle Scholar
  39. Teixeira VH, Olaso R, Martin-Magniette ML et al (2009) Transcriptome analysis describing new immunity and defense genes in peripheral blood mononuclear cells of rheumatoid arthritis patients. PLoS One 4(8):e6803PubMedCentralPubMedCrossRefGoogle Scholar
  40. Thompson SJ, Elson CJ (1993) Susceptibility to pristane-induced arthritis is altered with changes in bowel flora. Immunol Lett 36(2):227–231PubMedCrossRefGoogle Scholar
  41. Thompson SJ, Rook GA, Brealey RJ et al (1990) Autoimmune reactions to heat-shock proteins in pristane-induced arthritis. Eur J Immunol 20(11):2479–2484PubMedCrossRefGoogle Scholar
  42. Thompson SJ, Hitsumoto Y, Zhang YW et al (1992) Agalactosyl IgG in pristane-induced arthritis. Pregnancy affects the incidence and severity of arthritis and the glycosylation status of IgG. Clin Exp Immunol 89(3):434–438PubMedCentralPubMedCrossRefGoogle Scholar
  43. Thompson SJ, Francis JN, Siew LK et al (1998) An immunodominant epitope from mycobacterial 65-kDa heat shock protein protects against pristane-induced arthritis. J Immunol 160(9):4628–4634PubMedGoogle Scholar
  44. Van Den Berg WB (2009) Lessons from animal models of arthritis over the past decade. Arthritis Res Ther 11(5):250–259PubMedCentralPubMedCrossRefGoogle Scholar
  45. Vidal SM, Epstein DJ, Malo D et al (1992) Identification and mapping of six microdissected genomic DNA probes to the proximal region of mouse chromosome 1. Genomics 14(1):32–37PubMedCrossRefGoogle Scholar
  46. Vigar ND, Cabrera WH, Araujo LM et al (2000) Pristane-induced arthritis in mice selected for maximal or minimal acute inflammatory reaction. Eur J Immunol 30(2):431–437PubMedCrossRefGoogle Scholar
  47. Vorraro F, Galvan A, Cabrera WH et al (2010) Genetic control of IL-1 beta production and inflammatory response by the mouse Irm1 locus. J Immunol 185(3):1616–1621PubMedCrossRefGoogle Scholar
  48. Weis JJ, Mccracken BA, Ma Y et al (1999) Identification of quantitative trait loci governing arthritis severity and humoral responses in the murine model of Lyme disease. J Immunol 162(2):948–956PubMedGoogle Scholar
  49. You S, Yoo SA, Choi S et al (2014) Identification of key regulators for the migration and invasion of rheumatoid synoviocytes through a systems approach. Proc Natl Acad Sci U S A 111(1):550–555PubMedCentralPubMedCrossRefGoogle Scholar
  50. Yu X, Bauer K, Koczan D et al (2007) Combining global genome and transcriptome approaches to identify the candidate genes of small-effect quantitative trait loci in collagen-induced arthritis. Arthritis Res Ther 9(1):3–17CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Olga Martinez Ibañez
    • 1
  • José Ricardo Jensen
    • 1
  • Marcelo De Franco
    • 1
  1. 1.Laboratory of ImmunogeneticsButantan InstituteSão PauloBrazil

Personalised recommendations