Skip to main content

An Interconnected Systems Approach to Flow Transition Control

  • Conference paper
Active Flow and Combustion Control 2014

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 127))

  • 1979 Accesses

Abstract

This paper presents the application of an interconnected systems approach to the flow transition control problem. The control system consists of a network of local controllers with dedicated actuators and sensors. The measured feedback signals used by the controllers are the local changes in wall shear force, and the generated control action is a local change in fluid wall normal velocities. The approach presented here does not require periodicity of the channel as was required by most earlier approaches. Thus, in contrast to previously proposed control schemes which operate in Fourier domain, this approach works in physical domain. Secondly it does not restrict the number of interacting units, thus allowing the application of MEMS arrays. In order to synthesize such controllers, first the dynamics of the fluid is converted into interconnected system form. The model is validated using a non-linear simulation environment developed in FLUENT, and by analysing the growth in the transient energy. The model is then used to synthesize an interconnected controller. The simulated closed-loop response shows that the controller can delay the transition by reducing the transient energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. el Hak, M.G.: Modern developments in flow control. Applied Mechanics Review 49, 365–379 (1996)

    Article  Google Scholar 

  2. Chughtai, S., Werner, H.: Transition control of plane Poiseuille flow - a spatially interconnected model. In: Proc. of 47th IEEE Conference on Decision and Control, Cancun, Mexico (2008)

    Google Scholar 

  3. Baramov, L., Tutty, O., Rogers, E.: H  ∞  control of nonperiodic two-dimensional channel flow. IEEE Transactions on Control Systems Technology 12(1), 111–122 (2004)

    Article  Google Scholar 

  4. Fasel, H.: Investigation of the stability of boundary layers by a finite-difference model of the Navier-Stokes equations. Journal of Fluid Mechanics 78, 355–383 (1976)

    Article  MATH  Google Scholar 

  5. Daube, O.: Resolution of the 2D Navier-Stokes equations in velocity-vorticity forms by means of an influence matrix technique. Journal of Computational Physics 103, 402–414 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Butler, K., Farrell, B.: Three dimensional optimal disturbances in viscous shear flow. Physics of Fluids 4(8), 1637–1650 (1992)

    Article  Google Scholar 

  7. Trefethen, L., Trefethen, A., Reddy, S., Driscoll, T.: Hydrodynamic stability without eigenvalues. Science 261(30), 578–584 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bewley, T., Liu, S.: Optimal and robust control and estimation of linear paths to transition. Journal of Fluid Mechanics 365(12), 305–349 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. McKernan, J., Whidborne, J., Papadakis, G.: Linear quadratic control of plane Poiseuille flow-transient behaviour. International Journal of Control 80(12), 1912–1930 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jovanovic, M., Bamieh, B.: Componentwise energy amplification in channel flows. Journal of Fluid Mechanics 534, 145–183 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. King, R., Aleksic, K., Gelbert, G., Losse, N., Muminovic, R., Brunn, A., Nitsche, W., Bothien, M., Moeck, J., Paschereit, C., Noack, B., Rist, U., Zeng, M.: Model predictive flow control. In: Proc. of 4th Flow Control Conference, Seattle, USA (2008)

    Google Scholar 

  12. Krstic, M., Smyshlyaev, A.: Boundary control of PDEs: A course on backstepping design. SIAM (2008)

    Google Scholar 

  13. el Hak, M.G., Tsai, H.: Transition and turbulence control. Lecture notes. World Scientific Publishing Co. Ltd. (2006)

    Google Scholar 

  14. King, R.: Active Flow Control. NNFM, vol. 95. Springer, Heidelberg (2007)

    Book  MATH  Google Scholar 

  15. Peyret, R.: Spectral methods for incompressible viscous flow. Applied Mathematical Science. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  16. Orszag, S.: Accurate solution of the Orr-Sommerfeld stability equation. Journal of Fluid Mechanics 50(4), 689–703 (1971)

    Article  MATH  Google Scholar 

  17. Kim, J., Bewley, T.R.: A linear systems approach to flow control. Ann. Rev. Fluid Mech. (39), 39–383 (2007)

    Google Scholar 

  18. Sipp, D., Marquet, O., Meliga, P., Barbagallo, A.: Dynamics and control of global instabilities in open-flows: a linearized approach. Appl. Mech. Rev. 3(63), 30801 (2010)

    Article  Google Scholar 

  19. Bagheri, S., Henningson, D.S.: Transition delay using control theory. Philos. Trans. R. Soc. (369), 1365–1381 (2011)

    Google Scholar 

  20. McKernan, J.: Control of plane Poiseuille flow: A theoretical and computational investigation. PhD thesis, Cranfield University, Dept. of Aerospace Siences, School of Engineering (2006)

    Google Scholar 

  21. Fluent, I.: FLUENT 6.3 User’s Guide. FLUENT Inc. (2006)

    Google Scholar 

  22. Boyd, J.: Chebyshev and Fourier Spectral Methods. Dover Publications Inc., New York (2001)

    MATH  Google Scholar 

  23. Schmid, P., Henningson, D.: Stability and transition in shear flows. Springer, New York (2001)

    Book  MATH  Google Scholar 

  24. Trefethen, L.: Pseudospectra of linear operators. SIAM Review 39(3), 383–406 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ali, M., Ali, A., Chughtai, S., Werner, H.: Consisitent identification of spatially interconnected systems. In: Proc. American Control Conference, San Francisco, CA, USA, pp. 3583–3588 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saulat S. Chughtai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chughtai, S.S., Werner, H. (2015). An Interconnected Systems Approach to Flow Transition Control. In: King, R. (eds) Active Flow and Combustion Control 2014. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-319-11967-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11967-0_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11966-3

  • Online ISBN: 978-3-319-11967-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics