Skip to main content

Dielectric Barrier Discharge Plasma Flow Control on a Vertical Axis Wind Turbine

  • Conference paper
Active Flow and Combustion Control 2014

Abstract

Unsteady flow separation was partially controlled on a double-bladed H-Rotor vertical axis wind turbine model using pulsed dielectric barrier discharge plasma actuators at wind speeds between 4.4m/s and 7.1m/s. With pulsations applied in an open-loop manner on the inboard side of the blades, flowfield measurements showed that the development and shedding of the dynamic stall vortex could be modified. Pulsations were then applied in a feed-forward manner by predetermining the plasma-pulsation initiation and termination azimuth angles. These angles were selected on the basis of wind speed and turbine rotational speed, with the objective of maximizing the net turbine output power. Remarkably, a net turbine power increase of more than 10% was measured. For the purposes of power regulation, a hysteresis controller was applied to the turbine subjected to a fluctuating wind profile. Control produced a 7% increase in net power and a reduction from ±6.5% to ±1.3% in power fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MacPhee, D., Beyene, A.: Recent Advances in Rotor Design of Vertical Axis Wind Turbines. Wind Engineering 36(6), 647–666 (2012)

    Article  Google Scholar 

  2. Islam, M., Ting, D.S.-K., Fartaj, A.: Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renewable and Sustainable Energy Reviews 12, 1087–1109 (2008)

    Article  Google Scholar 

  3. Howell, R., Qin, N., Edwards, J., Durrani, N.: Wind tunnel and numerical study of a small vertical axis wind turbine. Renewable Energy 35, 412–422 (2010)

    Article  Google Scholar 

  4. McLaren, K., Tullis, S., Ziada, S.: Computational fluid dynamics simulation of the aerodynamics of a high solidity, small-scale vertical axis wind turbine. Wind Energy 15, 349–361 (2012)

    Article  Google Scholar 

  5. Scheurich, F., Fletcher, T.M., Brown, R.E.: Simulating the aerodynamic performance and wake dynamics of a vertical-axis wind turbine. Wind Energy 14, 159–177 (2011)

    Article  Google Scholar 

  6. Marsh, G.: Offshore reliability. Renewable Energy Focus, 62–65 (May/June 2012)

    Google Scholar 

  7. Shires, A.: Design optimisation of an offshore vertical axis wind turbine. Energy 166(1), 7–18, Proceedings of the Institution of Civil Engineers, doi.org/10.1680/ener.12.00007.

    Google Scholar 

  8. Akimoto, H., Tanaka, K., Uzawa, K.: Floating axis wind turbines for offshore power generation – a conceptual study. Environmental Research Letters 6(4), 044017 (2011), doi:10.1088/1748-9326/6/4/044017

    Google Scholar 

  9. Carr, L.W.: Progress in the analysis and prediction of dynamic stall. AIAA Journal of Aircraft 25(1), 6–17 (1988)

    Article  Google Scholar 

  10. Simão Ferreira, C.J., van Zuijlen, A., Bijl, H., van Bussel, G.J.W., van Kuik, G.A.M.: Simulating dynamic stall in a two-dimensional vertical-axis wind turbine: Verification and validation with particle image velocimetry data. Wind Energy 13(1), 1–17 (2009)

    Article  Google Scholar 

  11. Simão Ferreira, C.J., van Kuik, G.A.M., van Bussel, G.J.W., Scarano, F.: Visualization by PIV of dynamic stall on a vertical axis wind turbine. Experiments in Fluids 46(1), 97–108 (2009)

    Article  Google Scholar 

  12. Paraschivoiu, I.: Double-multiple streamtube model for Darrieus wind turbines. In: Second DOE/NASA Wind Turbines Dynamics Workshop, NASA CP-2186, Cleveland, OH, pp. 19–25 (February 1981)

    Google Scholar 

  13. Greenblatt, D., Neuburger, D., Wygnanski, I.: Dynamic Stall Control by Intermittent Periodic Excitation. AIAA Journal of Aircraft 38(1), 188–190 (2001)

    Article  Google Scholar 

  14. Greenblatt, D., Wygnanski, I.: Dynamic stall control by periodic excitation. Part 1: NACA 0015 Parametric Study. AIAA Journal of Aircraft 38(3), 430–438 (2001)

    Article  Google Scholar 

  15. Greenblatt, D.: Active Control of Leading-Edge Dynamic Stall. International Journal of Flow Control 2(1), 21–38 (2010)

    Article  Google Scholar 

  16. Greenblatt, D., Wygnanski, I.: The control of separation by periodic excitation. Progress in Aerospace Sciences 36(7), 487–545 (2000)

    Article  Google Scholar 

  17. Post, M.L., Corke, T.C.: Separation control using plasma actuators: dynamic stall vortex control on oscillating airfoil. AIAA Journal 44, 3125–3135 (2006)

    Article  Google Scholar 

  18. Greenblatt, D., Schulman, M., Ben-Harav, A.: Vertical axis wind turbine performance enhancement using plasma actuators. Renewable Energy 37(1), 345–354 (2012)

    Article  Google Scholar 

  19. Greenblatt, D., Ben-Harav, A., Mueller-Vahl, H.: Dynamic Stall Control on a Vertical-Axis Wind Turbine Using Plasma Actuators. AIAA Journal 52(2), 456–462 (2014), doi:10.2514/1.J052776.

    Article  Google Scholar 

  20. Corke, T.C., Post, M.L., Orlov, D.M.: SDBD Plasma Enhanced Aerodynamics: Concepts, Optimization and Applications. Progress in Aerospace Sciences 43, 193–217 (2007)

    Article  Google Scholar 

  21. Müller-Vahl, H., Strangfeld, C., Nayeri, C.N., Paschereit, C.O., Greenblatt, D.: Thick Airfoil Dynamic Stall. In: Euromech Colloquium 528 “Wind Energy and the Impact of Turbulence on the Conversion Process. Springer (2013) (in press)

    Google Scholar 

  22. Attinello, J.S.: Design and engineering features of flap blowing installations. In: Lachmann, G.V. (ed.) Boundary Layer and Flow Control. Its Principles and Application, vol. 1, pp. 463–515. Pergamon Press, New York (1961)

    Google Scholar 

  23. Thomas, F.O., Corke, T.C., Iqbal, M., Kozlov, A., Schatzman, D.: Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control. AIAA Journal 47(9), 2169–2178 (2009)

    Article  Google Scholar 

  24. Greenblatt, D., Göksel, B., Rechenberg, I., Schüle, C., Romann, D., Paschereit, C.O.: Dielectric Barrier Discharge Flow Control at Very Low Flight Reynolds Numbers. AIAA Journal 46(6), 1528–1541 (2008)

    Article  Google Scholar 

  25. Furman, Y., Müller-Vahl, H., Greenblatt, D.: Development of a Low-Speed Oscillatory Flow Wind Tunnel. In: 51st AIAA Aerospace Sciences Meeting, Grapevine, Texas, AIAA Paper 2013-0505 (2013)

    Google Scholar 

  26. Göksel, B., Greenblatt, D., Rechenberg, I., Nayeri, C.N., Paschereit, C.O.: Steady and Unsteady Plasma Wall Jets for Separation and Circulation Control. In: 3rd AIAA Flow Control Conference, San Francisco, California, USA, June 5-8, AIAA Paper 2006-3686 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Greenblatt, D., Müller-Vahl, H., Lautman, R., Ben-Harav, A., Eshel, B. (2015). Dielectric Barrier Discharge Plasma Flow Control on a Vertical Axis Wind Turbine. In: King, R. (eds) Active Flow and Combustion Control 2014. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-319-11967-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11967-0_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11966-3

  • Online ISBN: 978-3-319-11967-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics