Skip to main content

An Experimental Study of Different Obstacle Types for Flame Acceleration and DDT

  • Conference paper
Active Flow and Combustion Control 2014

Abstract

Harnessing detonations for energy conversion and transport applications requires methods for efficient deflagration-to-detonation transition (DDT) over short distances. The results of three different experiments, characterizing different types of obstacles for flame acceleration and DDT are reported in this work. Flame acceleration by obstacles with identical blockage ratio but different geometric details is investigated using light-sheet tomography. Small but distinct differences in propagation speeds are identified, which correspond to the various obstacle geometries. DDT experiments are carried out to investigate these configurations beyond initial flame acceleration observable with high-speed imagery. A strong effect of obstacle spacing on DDT success is observed, indicating an optimal spacing of slightly larger than two tube diameters. A so-called pseudo-orifice is considered in order to recreate the flow behind a mechanical orifice with the same blockage ratio considered in the previous experiments (0.43). The pseudo-orifice injects fluid perpendicular to the flow, creating a circumferential jet-in-crossflow configuration. Particle image velocimetry is conducted in an acrylic water test-rig in order to measure the flow field in several planes in the acrylic combustion chamber model to assess the effect of the pseudo-orifice on the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rasheed, A., Furman, A.H., Dean, A.J.: Experimental investigations of the performance of a multitube pulse detonation turbine system. Journal of Propulsion and Power 27(3), 586–596 (2011)

    Article  Google Scholar 

  2. Zel’dovich, Y.B.: To the question of energy use of detonation combustion. Zhurnal tekhnicheskoi fiziki 10(17), 1453–1461 (1940)

    Google Scholar 

  3. Jacobs, S.J.: The energy of detonation. NAVORD Report 4366, U.SṄaval Ordnance Laboratory, White Oak, MD. NTIS AD113271 – Old Series (1956)

    Google Scholar 

  4. Wintenberger, E., Shepherd, J.E.: Thermodynamic analysis of combustion processes for propulsion systems. In: AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2004-1033 (2004)

    Google Scholar 

  5. Wintenberger, E., Shepherd, J.E.: Thermodynamic cycle analysis for propagating detonations. Journal of Propulsion and Power 22(3), 694–697 (2006)

    Article  Google Scholar 

  6. Schultz, E., Wintenberger, E., Shepherd, J.: Investigation of deflagration to detonation transition for application to pulse detonation engine ignition systems. In: 16th JANNAF Propulsion Meeting (1999)

    Google Scholar 

  7. Lee, J.H., Knystautas, R., Chan, C.K.: Turbulent flame propagation in obstacle-filled tubes. Symposium (International) on Combustion 20(1), 1663–1672 (1985)

    Article  Google Scholar 

  8. Guirao, C.M., Knystautas, R., Lee, J.H.: A summary of hydrogen–air detonation experiments. NUREG/CR-4961, SAND87-7128. Sandia National Laboratories (1989)

    Google Scholar 

  9. Lee, J.H.S., Knystautas, R., Yoshikawa, N.: Photochemical initiation of gaseous detonations. Acta Astronautica 5, 971–982 (1978)

    Article  Google Scholar 

  10. Knox, B.W., Forliti, D.J., Stevens, C.A., Hoke, J.L., Schauer, F.R.: A comparison of fluidic and physical obstacles for deflagration-to-detonation transition. In: AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2011–587 (2011)

    Google Scholar 

  11. Boyer, L.: Laser tomographic method for flame front movement studies. Combustion and Flame 39(3), 321–323 (1980)

    Article  MathSciNet  Google Scholar 

  12. Dorofeev, S.B., Sidorov, V.P., Kuznetsov, M.S., Matsukov, I.D., Alekseev, V.I.: Effect of scale on the onset of detonations. Shock Waves 10, 137–149 (2000)

    Article  Google Scholar 

  13. Knystautas, R., Lee, J.H., Moen, I., Wagner, H.G.: Direct initiation of spherical detonation by a hot turbulent gas jet. Symposium (International) on Combustion 17(1), 1235–1245 (1979)

    Article  Google Scholar 

  14. Lee, S.-Y., Watts, J., Saretto, S., Pal, S., Conrad, C., Woodward, R., Santoro, R.: Deflagration to detonation transition processes by turbulence-generating obstacles in pulse detonation engines. Journal of Propulsion and Power 20(6), 1026–1036 (2004)

    Article  Google Scholar 

  15. Porowski, R., Teodorczyk, A.: Experimental study on DDT for hydrogen–methane–air mixtures in tube with obstacles. Journal of Loss Prevention in the Process Industries 26, 374–379 (2013)

    Article  Google Scholar 

  16. Clanet, C., Searby, G.: On the “tulip flame” phenomenon. Combustion and Flame 105, 225–238 (1996)

    Article  Google Scholar 

  17. Theodorczyk, A., Drobniak, P., Dabkowski, A.: Fast turbulent deflagration and DDT of hydrogen–air mixtures in small obstructed channel. International Journal of Hydrogen Energy 34(14), 5887–5893 (2009)

    Article  Google Scholar 

  18. Ciccarelli, G., Ginsberg, T., Boccio, J., Economos, C., Sato, K., Kinoshita, M.: Detonation Cell Size Measurements and Predictions in Hydrogen–Air–Steam Mixtures at Elevated Temperatures. Combustion and Flame 99, 212–220 (1994)

    Article  Google Scholar 

  19. Tieszen, S.R., Sherman, M.P., Benedick, W.B., Shepherd, J.E., Knystautas, R., Lee, J.H.S.: Detonation cell size measurements in hydrogen–air–steam mixtures. Progress in Astronautic and Aeronautics 106, 205–219 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua A. T. Gray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gray, J.A.T., Paschereit, C.O., Moeck, J.P. (2015). An Experimental Study of Different Obstacle Types for Flame Acceleration and DDT. In: King, R. (eds) Active Flow and Combustion Control 2014. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-319-11967-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11967-0_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11966-3

  • Online ISBN: 978-3-319-11967-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics