Skip to main content

Investigation of Equivalence Ratio Fluctuations on the Dynamics of Turbulent Lean Premixed Methane/Air Flames with a Linear-Eddy Model

  • Conference paper
Active Flow and Combustion Control 2014

Abstract

Heat release fluctuations generated by equivalence ratio fluctuations may interact with the acoustics of a gas turbine combustion chamber leading to unwanted combustion instabilities, which remains a critical issue in the development of low emission, lean premixed gas turbine combustors. The present article addresses this topic by numerical investigations of one-dimensional lean premixed methane/air flames subject to prescribed sinusoidal equivalence ratio fluctuations. Compared to previous investigations, we focus on turbulent conditions and emission predictions using the one-dimensional linear-eddy model (LEM) and detailed chemistry. Within the limitations of the one-dimensional LEM the approach allows to investigate the fully non-linear regime of flame response to equivalence ratio fluctuations under turbulent conditions. Results for different forcing amplitudes and turbulence levels indicate a strongly non-linear behavior for high forcing amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Orf, G.M., Cant, R.S.: Joint Meeting of the Portuguese, British, Spanish and Swedish Sections of the Combustion Institute, April 1-4, Madeira, Portugal (1996)

    Google Scholar 

  2. Armitage, C.A., Balachandran, R., Mastorakos, E., Cant, R.S.: Combustion and Flame. Combustion and Flame 146, 419–436 (2006)

    Article  Google Scholar 

  3. Balachandran, R., Ayoola, B.O., Kaminski, C.F., Dowling, A.P., Mastorakos, E.: Combustion and Flame 143, 37–55 (2005)

    Google Scholar 

  4. Balachandran, R., Dowling, A.P., Mastorakos, E.: Proceeding of the European Combustion Meeting (2011)

    Google Scholar 

  5. Birbaud, A.L., Ducruix, S., Durox, D., Candel, S.: Combustion and Flame  154, 356–367 (2008)

    Google Scholar 

  6. Cho, J.H., Lieuwen, T.: Combustion and Flame 140(1-2), 116 – 129 (2005)

    Google Scholar 

  7. Cohen, S.D., Hindmarsch, A.C.: Computers in Physics 10(2), 138–143 (1996)

    Article  Google Scholar 

  8. Goodwin, D.: Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes (2009), http://code.google.com/p/cantera

  9. Hemchandra, S.: Combustion and Flame 159, 3530–3543 (2012)

    Article  Google Scholar 

  10. Hemchandra, S., Peters, N., Lieuwen, T.: Proceedings of the Combustion Institute 33, 1609–1617 (2011)

    Article  Google Scholar 

  11. Huang, Y., Yang, V.: Progress in Energy and Combustion Science 35, 293–364 (2009)

    Article  Google Scholar 

  12. Jozefik, Z., Kerstein, A.R., Schmidt, H.: To be presented at the “Active Flow and Combustion Control” Conference, Berlin, Germany (September 2014)

    Google Scholar 

  13. Kerstein, A.R.: Combustion Science and Techology 60, 391–421 (1988)

    Article  Google Scholar 

  14. Kerstein, A.R.: Combustion and Flame 75, 397–413 (1989)

    Article  Google Scholar 

  15. Kerstein, A.R.: Journal of Fluid Mechanics 231, 361–394 (1991)

    Article  MATH  Google Scholar 

  16. Kerstein, A.R.: Combustion Science and Technology 81, 75–96 (1992)

    Article  Google Scholar 

  17. Kerstein, A.R.: Journal of Fluid Mechanics 240, 289–313 (1992)

    Article  Google Scholar 

  18. Kerstein, A.R.: Combustion and Flame 75(3-4), 397–413 (1989)

    Article  Google Scholar 

  19. Kerstein, A.R.: Journal of Fluid Mechanics 231, 361–394 (1991)

    Article  MATH  Google Scholar 

  20. Kim, K.T., Lee, J.G., Quay, B.D., Santavicca, D.: Journal of Engineering for Gas Turbines and Power 133(2), 021502 (2010)

    Google Scholar 

  21. König, K., Bykov, B., Maas, U.: Flow, Turbulence and Combustions 83, 105–129 (2009)

    Article  MATH  Google Scholar 

  22. Lacarelle, A., Moeck, J.P., Tenham, A., Paschereit, C.O.: 47th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida. AIAA paper, January 5-8, pp. 2009–2986 (2009)

    Google Scholar 

  23. Lieuwen, T., Neumeier, Y., Zinn, B.T.: Combustion Science and Technology 135, 193–211 (1998)

    Article  Google Scholar 

  24. Lieuwen, T., Zinn, B.T.: 27th Symposium (International) on Combustion/The Combustion Institute, pp. 1809–1816 (1998)

    Google Scholar 

  25. Lieuwen, T.C., Yang, V.: AIAA, Inc. (2005)

    Google Scholar 

  26. Lignell, D.O., Kerstein, A.R., Sun, G., Monson, E.I.: Theoretical and Computational Fluid Dynamics 27(3-4), 273–295 (2013)

    Article  Google Scholar 

  27. Menon, S., Kerstein, A.R.: Twenty-Fourth Symposium (International) on Combustion, pp. 443–450 (1992)

    Google Scholar 

  28. Oevermann, M., Schmidt, H., Kerstein, A.: Combustion and Flame 155, 370–379 (2008)

    Article  Google Scholar 

  29. Paschereit, C.O., Gutmark, E., Weisenstein, W.: Combustion Science and Technology 138, 213–232 (1998)

    Article  Google Scholar 

  30. Paschereit, C.O., Gutmark, E., Weisenstein, W.: AIAA Paper 99-0711 (1999)

    Google Scholar 

  31. Paschereit, C.O., Gutmark, E.J., Weisenstein, W.: AIAA Journal 38(6), 1025–1034 (2000)

    Article  Google Scholar 

  32. Patel, N., Menon, S.: Combustion and Flame 153, 228–257 (2008)

    Article  Google Scholar 

  33. Peters, N.: Turbulent Combustion. Cambridge University Press (2000)

    Google Scholar 

  34. Poinsot, T., Candel, S.M.: Combustion Science and Technology 61, 121–151 (1988)

    Article  Google Scholar 

  35. Richardson, E.S., Granet, V.E., Eyssartier, A., Chen, J.H.: Combustion Theory and Modelling 14(6), 775–792 (2010)

    Article  MATH  Google Scholar 

  36. Sankaran, V., Menon, S.: Proceedings of the Combustion Institute 28, 203–209 (2000)

    Article  Google Scholar 

  37. Sankaran, V., Menon, S.: Proceedings of the Combustion Institute 30, 575–582 (2005)

    Article  Google Scholar 

  38. Sattelmayer, T.: Journal of Engineering for Gas Turbines and Power 125, 11–19 (2003)

    Article  Google Scholar 

  39. Schmidt, H., Oevermann, M., Bastiaans, R.J.M., Kerstein, A.R.: Technical Report 09-09, Konrad-Zuse-Zentrum Berlin, ZIB (2009)

    Google Scholar 

  40. Schrödinger, C., Nolte, D., Oevermann, M., Paschereit, C.O.: Proceedings of the European Combustion Meeting (2013)

    Google Scholar 

  41. Sen, B.A., Menon, S.: Combustion and Flame 157, 566–578 (2010)

    Article  Google Scholar 

  42. Sen, B.A., Menon, S.: Combustion and Flame 157, 62–74 (2010)

    Article  Google Scholar 

  43. Seo, S., Lee, S.-Y.: Flow, Turbulence and Combustion 85, 95–112 (2010)

    Article  MATH  Google Scholar 

  44. Shreekrishna, Hemchandra, S., Lieuwen, T.: Combustion Theory and Modelling 14(5), 681–714 (2010)

    Article  MATH  Google Scholar 

  45. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner Jr., W.C., Lissianski, V.V., Qin, Z.: GRI-Mech 3.0, The Gas Research Institute (1999), http://www.me.berkeley.edu/gri-mech/

  46. Smith, T.M., Menon, S.: Combustion Science and Technology 128, 99–130 (1997)

    Article  Google Scholar 

  47. Some, K., Menon, S.: Journal of Engineering for Gas Turbines and Power 125, 435–443 (2003)

    Article  Google Scholar 

  48. Venkataraman, K.K., Preston, L.H., Simons, D.W., Lee, B.J., Lee, J.G., Santavicca, D.A.: Journal of Propulsion and Power 15(6), 909–918 (1999)

    Article  Google Scholar 

  49. Woosley, S.E., Kerstein, A.R., Sankaran, V., Aspden, A.J., Röpke, F.K.: The Astrophysical Journal 704, 255–273 (2009)

    Article  Google Scholar 

  50. Zhou, R., Hochgreb, S.: Combustion and Flame 160, 1070–1082 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Oevermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Oevermann, M., Schrödinger, C., Paschereit, C.O. (2015). Investigation of Equivalence Ratio Fluctuations on the Dynamics of Turbulent Lean Premixed Methane/Air Flames with a Linear-Eddy Model. In: King, R. (eds) Active Flow and Combustion Control 2014. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-319-11967-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11967-0_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11966-3

  • Online ISBN: 978-3-319-11967-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics