Skip to main content

Active Boundary Layer Control with Fluidic Oscillators on Highly-Loaded Turbine Airfoils

  • Conference paper
Book cover Active Flow and Combustion Control 2014

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 127))

Abstract

The trend in jet engine development to reduce airfoil count is still ongoing in order to reduce weight and cost without sacrificing performance. In this context highly loaded airfoils have successfully been developed in the last decade. A better understanding of boundary layer transition and separation phenomena on turbine blades in combination with periodic incoming wakes was the key for this success. The Institute of Jet Propulsion of the Universität der Bundeswehr in Munich, Germany was heavily involved in the research effort from the very beginning. Since the flow gets prone to massive flow separation, associated with drastic increase of total pressure losses, further increased aerodynamic loading can only be achieved when applying passive or active methods to control the boundary layer on the blade surface. Reviewing shortly activities with passive devices this paper gives an overview of the research on active boundary layer control with fluidic oscillators on turbine blades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airbus, Global Market Forecast “Future Journeys 2013-2014” (2013), http://www.airbus.com/company/market/gmf2013

  2. Riegler, C., Bichlmaier, C.: The Geared Turbofan Technology - Opportunities, Challenges and Readiness Status. In: 1st CEAS European Air and Space Conference CEAS-2007-054 (2007)

    Google Scholar 

  3. Schulte, V., Hodson, H.P.: Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines. ASME J. Turbomach. 120, 28–35 (1998)

    Article  Google Scholar 

  4. Howell, R.J., Hodson, H.P., Schulte, V., Stieger, R.D., Schiffer, H.-P., Haselbach, F., Harvey, N.W.: Boundary Layer Development in the BR710 and BR715 LP Turbines - The Implementation of High-Lift and Ultra-High-Lift Concepts. ASME J. Turbomach. 124, 385–392 (2002)

    Article  Google Scholar 

  5. Brunner, S., Fottner, L., Schiffer, H.-P.: Comparison of Two Highly Loaded Low Pressure Turbine Cascades under the Influence of Wake-Induced Transition. ASME Paper 2000-GT-268 (2000)

    Google Scholar 

  6. Haselbach, F., Schiffer, H.P., Horsmann, M., Dressen, S., Harvey, N., Read, S.: The Application of Ultra High Lift Blading in the BR 715 LP Turbine. ASME J. Turbomach. 124, 45–51 (2002)

    Article  Google Scholar 

  7. Gier, J., Ardey, S.: On the Impact of Blade Count Reduction on Aerodynamic Performance and Loss Generation in a Three-Stage LP Turbine. ASME Paper 2001-GT-0197 (2001)

    Google Scholar 

  8. Hourmouziadis, J.: Aerodynamic Design of Low-Pressure Turbines, AGARD Lecture Series No. 167 (1989)

    Google Scholar 

  9. Wakelam, C.T., Hoeger, M., Niehuis, R.: A Comparison of Three Low Pressure Turbine Designs. ASME J. Turbomach. 135, 051026 (2013)

    Article  Google Scholar 

  10. Sturm, W., Fottner, L.: The High Speed Cascade Wind Tunnel of the German Armed Forces University Munich. In: 8th Symposium on Measuring Techniques for Transonic and Supersonic Flows in Cascades and Turbomachines (1985)

    Google Scholar 

  11. Acton, P., Fottner, L.: The Generation of Instationary Flow Conditions in the High Speed Cascade Wind Tunnel. In: 13th Symposium on Measurement Technique for Transonic and Supersonic Flows (1996)

    Google Scholar 

  12. Gier, J., Franke, M., Hübner, N., Schröder, T.: Designing Low Pressure Turbines for Optimized Airfoil Lift. ASME J. Turbomach. 132(3), 031008 (2010)

    Article  Google Scholar 

  13. Amecke, J.: Auswertung von Nachlaufmessungen an ebenen Schaufelgittern. Report 67A49, AVA Göttingen, Germany (1967)

    Google Scholar 

  14. Ardey, S.: Untersuchung der aerodynamischen Effekte von Vorderkanten-Kühlluftaus-blasung an einem hochbelasteten Turbinengitter. Ph.D. thesis, Universität der Bundeswehr München, Neubiberg, Germany (1998)

    Google Scholar 

  15. Praisner, T.J., Grover, E.A., Knezevici, D.C., Popovic, I., Sjolander, S.A., Clarke, J.P., Sondergaard, R.: Towards the Expansion of Low-Pressure-Turbine Airfoil Design Space. ASME J. Turbomach. 135, 061007 (2013)

    Article  Google Scholar 

  16. Martinstetter, M., Niehuis, R., Franke, M.: Passive Boundary Layer Control on a Highly Loaded Low Pressure Turbine Cascade. ASME Paper GT2010-22739 (2010)

    Google Scholar 

  17. Himmel, C.G., Thomas, R.L., Hodson, H.P.: Effective Passive Flow Control for Ultra-High Lift Low Pressure Turbines. In: ETC 8, Graz, Austria, March 23-27, pp. 17–27 (2009)

    Google Scholar 

  18. Ludewig, T., Mack, M., Niehuis, R., Franke, M.: Optimization of the Blowing Ratio for a Low Pressure Turbine Cascade with Active Flow Control. ETC2011 Paper No. 131 (2011)

    Google Scholar 

  19. Schlichting, H., Gersten, K.: Grenzschicht-Theorie. Auflage, vol. 10. Springer, Heidelberg (2006)

    Google Scholar 

  20. Wazzan, A.R., Okamura, T.T., Smith, A.M.O.: Spatial and Temporal Stability Charts for the Falkner–Skan Boundary Layer Profiles. Report No. DAC-67086, Douglas Aircraft Company (1968)

    Google Scholar 

  21. Mack, M., Niehuis, R., Fiala, A.: Parametric Study of Fluidic Oscillators for Use in Active Boundary Layer Control. ASME Paper No. GT2011-45073 (2011)

    Google Scholar 

  22. Gebhard, U., Hein, H., Schmidt, U.: Numerical Investigation of Fluidic Micro-Oscillators. Journal of Micromechanics and Microengineering 6, 115–117 (1996)

    Article  Google Scholar 

  23. Chen, C.-K., Wang, L., Yang, J.-T., Chen, L.-T.: Experimental and Computational Analysis of Periodic Flow Structure in Oscillator Gas Flow Meters. Journal of Mechanics 22, 137–144 (2006)

    Article  Google Scholar 

  24. Culley, D.E.: Active Flow Separation Control of a Stator Vane Using Surface Injection in a Multistage Compressor Experiment. ASME Paper GT2003-38863 (2003)

    Google Scholar 

  25. Cerreteli, C., Kirtley, K.: Boundary Layer Control with Fluidic Oscillators. J. Turbomach. 131(4), 41001 (2009)

    Article  Google Scholar 

  26. Ries, T., Baumann, J., Rist, U., Raab, I., Staudacher, S.: LP Turbine Laminar Separation with Actuated Transition; DNS, Experiment and Fluidic Oscillator CFD. ASME Paper GT2009-59600 (2009)

    Google Scholar 

  27. Mack, M., Niehuis, R., Fiala, A., Guendogdu, Y.: Boundary Layer Control on a Low Pressure Turbine Blade by Means of Pulsed Blowing. ASME J. Turbomach. 135, 051023 (2013)

    Article  Google Scholar 

  28. Mack, M., Brachmanski, R., Niehuis, R.: The Effect of Pulsed Blowing in the Boundary layer of a Highly Loaded Low Pressure Turbine Blade. ASME Paper No. GT2013-94566 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Niehuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Niehuis, R., Mack, M. (2015). Active Boundary Layer Control with Fluidic Oscillators on Highly-Loaded Turbine Airfoils. In: King, R. (eds) Active Flow and Combustion Control 2014. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-319-11967-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11967-0_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11966-3

  • Online ISBN: 978-3-319-11967-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics