Skip to main content

The Impact of Environmental Regulation and Some Strategies for Improving the Eco-Efficiency of Brazilian Agriculture

  • Chapter
  • First Online:
Decision Models in Engineering and Management

Part of the book series: Decision Engineering ((DECENGIN))

Abstract

The decision on who will pay for environmental damage to Brazilian agriculture and how this will be done looks like a zero-sum game between environmentalists and farmers. Their different interests, however, do not prevent the development of strategies that maximize social welfare. This work shows that it is possible to produce more with fewer resources and less environmental impact. Following Färe et al. (Rev Econ Stat 71:90–98, 1989) and Picazo-Tadeo et al. (Eur J Oper Res 220:798–809, 2012), we use data envelopment analysis (DEA) and directional distance functions (DDF) to evaluate the impact of environmental regulations on the drop in the productivity and eco-efficiency of Brazilian agriculture. The methodology is applied to the data from 33 decision-making units (DMUs): 27 States of the Federation of Brazil as a whole, and the five geographical regions taken in their entirety—relating to three inputs and three outputs, one of which is desirable and the other two undesirable. The results show that when DMUs face environmental rules preventing free disposal of undesirable output, their potential to increase desirable output is affected. Also an estimate was made of a set of eco-efficiency indicators that, satisfying the Pareto optimality concept, can support the formulation of strategies consistent with the simultaneous optimization of economic and environmental goals. Comparing the results with the commitments made by Brazil to reduce emissions in agriculture by 2020, it is concluded that the country can surpass the goal with technology given only improving the emissions, however, maintaining the level of resource consumption, production, and degraded lands. On the other hand, while trying to maximize production while minimizing land degradation and CO2 emissions, a maximum of two years is needed to attain this goal. Additional measures may be used, such as adopting international best practices and developing clean technology innovation. Accordingly, it is recommended that a high priority be given to strategies aimed at improving eco-efficiency and eliminating institutional barriers to transferring and spreading knowledge of best national and international technologies. These strategies can generate greater results in productivity and environmental conservation than other actions aimed at fostering technological innovation. While the cost of imitation of existing clean technology is lower than the cost of innovation, eco-inefficient units can approach the leaders, thus creating the conditions to sustain the convergence of economic and environmental development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This ratio shall increase to 30 % by 2030, according to McKinsey (2009).

  2. 2.

    If it adopted national best practices, agriculture would achieve only 74 % of what was predicted (3.67/4.9).

  3. 3.

    That is less relevant in this study, since our sample was the whole population.

References

  • Azad MAS, Ancev T (2010) Using ecological indices to measure economic and environmental performance of irrigated agriculture. Ecol Econ 69(8):1731–1739

    Article  Google Scholar 

  • Brasil (2006) Primeiro Inventário Brasileiro de Emissões Antrópicas de Gases de Efeito Estufa – Relatórios de Referência. Brasília: MCT – Ministério da Ciência e Tecnologia

    Google Scholar 

  • Brasil (2010) Segundo Inventário Brasileiro de Emissões de Gases de Efeito Estufa. MCT – Ministério da Ciência e Tecnologia, Brasília

    Google Scholar 

  • Brasil (2010a) Segundo Inventário Brasileiro de Emissões Antrópicas de Gases de Efeito Estufa – Relatórios de Referência: Emissões de óxido de nitroso de solos agrícolas e manejo de dejetos. Brasília: MCT – Ministério da Ciência e Tecnologia

    Google Scholar 

  • Brasil (2010b) Segundo Inventário Brasileiro de Emissões Antrópicas de Gases de Efeito Estufa – Relatórios de Referência: Emissões de GEE na queima de resíduos agrícolas. Brasília: MCT – Ministério da Ciência e Tecnologia

    Google Scholar 

  • Brasil (2010c) Segundo Inventário Brasileiro de Emissões Antrópicas de Gases de Efeito Estufa – Relatórios de Referência: Emissões de metano do cultivo de arroz. Brasília: MCT – Ministério da Ciência e Tecnologia

    Google Scholar 

  • Brasil (2010d) Segundo Inventário Brasileiro de Emissões Antrópicas de Gases de Efeito Estufa – Relatórios de Referência: Emissões de metano por fermentação entérica e manejo de dejetos de animais. Brasília: MCT – Ministério da Ciência e Tecnologia

    Google Scholar 

  • Brümmer B, Glauben T, Thijssen G (2002) Decomposition of productivity growth using distance functions: the case of dairy farms in three European countries. Am J Agric Econ 84(3):628–644. http://ajae.oxfordjournals.org/content/84/3/

  • Chung YH, Färe R, Grosskopf S (1997) Productivity and undesirable outputs: a directional distance function approach. J Environ Manage 51(3):229–240

    Article  Google Scholar 

  • Coelli TJ, Rao DSP, O’Donnell CJ, Battese GE (2005) An Introduction to efficiency and productivity analysis, 2nd edn. Springer, New York. http://www.springer.com/economics/econometrics/book/978-0-387-24265-1

  • Elkington J (1999) Cannibals with forks: triple bottom line of 21st century business. Capstone Publishing Ltd, Oxford, ISBN 9781841120843

    Google Scholar 

  • Färe R, Grosskopf S (2000) Theory and application of directional distance functions. J Prod Anal 13(2):93–103

    Article  Google Scholar 

  • Färe R, Grosskopf S (2005) New directions: efficiency and productivity. Springer, Berlin, p 183

    Google Scholar 

  • Färe R, Grosskopf S, Pasurka C (1986) Effects on relative efficiency in electric power generation due to environmental controls. Resour Energy 8(2):167–184

    Article  Google Scholar 

  • Färe R, Grosskopf S, Lovell CAK, Pasurka C (1989) Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach. Rev Econ Stat 71(1):90–98

    Article  Google Scholar 

  • Färe R, Grosskopf S, Weber WL (2006) Shadow prices and pollution costs in U.S. agriculture. Ecol Econ 56(1):89–103

    Article  Google Scholar 

  • Farrell MJ (1957) The measurement of productive efficiency. J Royal Stat Soc Series A (General) 120(3):253–290

    Article  Google Scholar 

  • Fernandez C, Koop G, Steel M FJ (2002) Multiple-output production with undesirable outputs: an application to nitrogen surplus in agriculture. J Am Stat Assoc 97:432–442. http://ideas.repec.org/a/bes/jnlasa/v97y2002mjunep432-442.html

  • Freeman AM, III, Haveman RH, Kneese AV (1973) Economics of environmental policy. Wiley, New York

    Google Scholar 

  • Gomes EG (2008) Uso de modelos DEA em agricultura: revisão da literatura. ENGEVISTA 10(1):27–51

    Google Scholar 

  • Grosskopf S (1986) The role of the reference technology in measuring productive efficiency. Econ J 96(382):499–513

    Article  Google Scholar 

  • IBGE (2010) Censo Agropecuário 2006. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro

    Google Scholar 

  • IBGE (2011) Sistema de Contas Nacionais - Brasil 2005–2009. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro

    Google Scholar 

  • Kjærsgaard J, Vestergaard N, Kerstens K (2009) Ecological benchmarking to explore alternative fishing schemes to protect endangered species by substitution: the Danish demersal fishery in the North Sea. Environ Resour Econ 43(4):573–590

    Article  Google Scholar 

  • Lampe HW, Hilgers D (2015) Trajectories of efficiency measurement: a bibliometric analysis of DEA and SFA. Eu J Oper Res 240(1):1–21, ISSN 0377-2217. http://www.sciencedirect.com/science/article/pii/S037722171400383X

  • Luenberger DG (1992) New optimality principles for economic efficiency and equilibrium. J Optim Theory Appl 75(2):221–264

    Article  MathSciNet  MATH  Google Scholar 

  • Malmquist S (1953) Index numbers and indifference curves. Trabajos de Estatistica 4(1):209–242

    Article  MathSciNet  MATH  Google Scholar 

  • McKinsey (2009) Caminhos para uma economia de baixa emissão de carbono no Brasil. McKinsey & Company, São Paulo

    Google Scholar 

  • Mendes JTG, Padilha Jr J (2007) Agronegócio: uma abordagem econômica: Pearson Prentice Hall, New Jersey, p 369

    Google Scholar 

  • Mickwitz P, Melanen M, Rosenström U, Seppälä J (2006) Regional eco-efficiency indicators—a participatory approach. J Clean Prod 14(18):1603–1611

    Article  Google Scholar 

  • O’Donnell CJ (2010) Measuring and decomposing agricultural productivity and profitability change*: agricultural productivity and profitability change. Aust J Agric Resour Econ 54(4):527–560. http://espace.library.uq.edu.au/view/UQ:223605

  • OECD (1998) Eco-efficiency. Co-operation O-OfE, Development, editors. OECD Publishing, Paris, p 84

    Google Scholar 

  • OECD (2010) OECD-FAO Agricultural outlook 2010–2019. OECD Publishing, Paris, p 252

    Google Scholar 

  • Picazo-Tadeo AJ, Prior D (2009) Environmental externalities and efficiency measurement. J Environ Manage 90(11):3332–3339

    Article  Google Scholar 

  • Picazo-Tadeo AJ, Reig-Martínez E, Hernández-Sancho F (2005) Directional distance functions and environmental regulation. Resour Energy Econ 27(2):131–142

    Article  Google Scholar 

  • Picazo-Tadeo AJ, Beltrán-Esteve M, Gómez-Limón JA (2012) Assessing eco-efficiency with directional distance functions. Eur J Oper Res 220(3):798–809

    Article  MATH  Google Scholar 

  • Pittman RW (1983) Multilateral productivity comparisons with undesirable outputs. Econ J 93(372):883–891

    Article  Google Scholar 

  • Porter ME, Van Der Linde C (1995) Green and competitive: ending the stalemate. Harvard Bus Rev 73(5):120–134

    Google Scholar 

  • Sarkis J, Weinrach J (2001) Using data envelopment analysis to evaluate environmentally conscious waste treatment technology. J Clean Prod 9(5):417–27. http://www.sciencedirect.com/science/article/pii/S0959652600000846

  • Schaltegger S (1996) Corporate environmental accounting, 1st edn. Wiley, New York. p 324

    Google Scholar 

  • Scheel H (2001) Undesirable outputs in efficiency valuations. Eur J Oper Res 132(2):400–410

    Article  MATH  Google Scholar 

  • Shephard RW(1953) Cost and production functions. Princeton Univ. Press, Princeton

    Google Scholar 

  • Tyteca D (1996) On the measurement of the environmental performance of firms—a literature review and a productive efficiency perspective. J Environ Manage 46(3):281–308

    Article  Google Scholar 

  • Verfaillie HA, Bidwell R (2000) Measuring eco-efficiency: a guide to reporting company performance. World Business Council for Sustainable Development—WBCSD, Geneva

    Google Scholar 

  • Zhang B, Bi J, Fan Z, Yuan Z, Ge J (2008) Eco-efficiency analysis of industrial system in China: a data envelopment analysis approach. Ecol Econ 68(1–2):306–316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Rosano-Peña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosano-Peña, C., Daher, C.E. (2015). The Impact of Environmental Regulation and Some Strategies for Improving the Eco-Efficiency of Brazilian Agriculture. In: Guarnieri, P. (eds) Decision Models in Engineering and Management. Decision Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-11949-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11949-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11948-9

  • Online ISBN: 978-3-319-11949-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics