Skip to main content

Carbon Capture Technologies

  • Chapter
  • First Online:
Carbon Capture, Storage and Use

Abstract

This chapter focuses on carbon capture technologies that can be used in coal fired power plants and industrial processes. The three technology lines (post combustion, pre-combustion, oxyfuel) will be described in terms of state of the art, efficiency losses and advantages and disadvantages. An outlook will be given of further developments in the long term (second generation). Special attention will be paid to retrofitting options of existing coal fired power plants. An increasing share of highly volatile renewable power generation will change the flexibility requirements of coal fired power plants. Against this background flexibility options will be discussed for power plants with carbon capture technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Coal to liquid.

  2. 2.

    For comparison, a hard-coal-fired power plant (500 MW, 4500 full load hours) emits around 1.7 MtCO2 per year.

  3. 3.

    Absorbent is tetraethylene glycol dimethyl ether.

References

  • Abanades JC, Anthony JC, Alvarez D, Lu DY, Salvador C (2004) Capture of CO2 from combustion gases in a fluidized bed of CaO. J Am Inst Chem Eng (AICHE) 50:1614–1622

    Article  CAS  Google Scholar 

  • Ausfelder F, Bazzanella A (2008) Verwertung und Speicherung von CO2. Diskussionspapier, DECHEMA, http://www.dechema.de/studien-path-1.html

  • Barker D (2010) Global technology roadmap for CCS in industry – cement sector. Conference Global Technology Roadmap for CCS in Industry. Abu Dhabi, 30.6.-1-7.2010: United Nations Industrial Development Organization

    Google Scholar 

  • Beggel F, Nauels N, Modigell M (2011) CO2 separation via the oxyfuel process with O2-transport membranes in coal power plants. In: Scherer V, Stolten D (eds) Efficient carbon capture for coal power plants. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • BMWI (2007) Leuchtturm COORETEC – Der Weg zum zukunftsfähigen Kraftwerk mit fossilen Brennstoffen. Bundesministerium für Wirtschaft und Technologie (BMWi), Berlin

    Google Scholar 

  • Brown J (2010) Global technology roadmap for industry – refineries. UNIDO Workshop Global technology roadmap for industry. Abu Dhabi, 30 Juni–1 Juli 2010: United Nations Industrial Development Organisation

    Google Scholar 

  • Bundesnetzagentur (2011) Genehmigung des Szenariorahmens für die Netzenwicklungsplanung gemäß §12a Abs. 3 EnWG. Bundesnetzagentur, Bonn

    Google Scholar 

  • Castillo R (2009) Technical evaluation of CO2 compression and purification in CCS power plants. 4th international conference on clean coal technologies, Dresden

    Google Scholar 

  • Castillo R (2011) Thermodynamic analysis of a hard coal oxyfuel power plant with high temperature three-end membrane for air separation. Appl Energy 88:1480–1493

    Article  CAS  Google Scholar 

  • Chalmers H (2010) Flexible operation of coal-fired power plant with CO2 capture. In: Centre ICC (ed) IEA Clean Coal Centre Report CCC/160, http://www.iea-coal.org.uk

  • Davison J (2011) Flexible CCS plants – a key to near-zero emission electricity systems. Energy Procedia 4:2548–2555

    Article  Google Scholar 

  • DBFZ (2012) Monitoring zur Wirkung des Erneuerbare-Energien-Gesetz (EEG) auf die Entwicklung von Biomasse – Endbericht zur EEG Periode 2009 bis 2011. Studie im Auftrag des Bundesministeriums für Umwelt und Reaktorsicherheit, Förderkennzeichen: 03MAP138. www.dbfz.de

  • De Coninck H, Mikunda T (2010) Global Technology Roadmap for CCS in Industry – background paper. ECN/United Nations Industrial Development Organization

    Google Scholar 

  • Engels S, Beggel F, Modigell M, Stadler H (2010) Simulation of a membrane unit for oxyfuel power plants under consideration of realistic BSCF membrane properties. J Membr Sci 359:93–101

    Article  CAS  Google Scholar 

  • Epple B, Ströhle J (2011) Chemical looping in power plants. In: Scherer V, Stolten D (eds) Efficient carbon capture for coal power plants. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Fahlenkamp H, Dittmar M (2011) CO2 removal in coal power plants via post-combustion with absorbents. In: Scherer V, Stolten D (eds) Efficient carbon capture for coal power plants. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  • Finkenrath M (2010) Cost and performance of carbon dioxide capture from power Generation. In: IEA (ed) Paris, http://www.iea.org

  • Finkenrath M, Smith J, Volk D (2012) Analysis of the globally installed coal-fired power plant fleet. Information paper, Internationale Energieagentur (IEA)

    Google Scholar 

  • Fleer J (2011) Technische und ökonomische Analyse von CCS für CO2-intensive Industrieprozesse. Diplomarbeit Ruhr-Universität Bochum (LEE), STE Student Research Report 09/2011, Forschungszentrum Jülich (IEK-STE)

    Google Scholar 

  • GCCS (2011) The global status of CCS 2011. Global CCS Institute (GCCS)

    Google Scholar 

  • Gielen D (2003) CO2 removal in the iron and steel industry. Energy Convers Manag 44:1027–1037

    Article  CAS  Google Scholar 

  • Göttlicher G (1999) Energetik der Kohlendioxidrückhaltung in Kraftwerken. VDI Verlag, Düsseldorf

    Google Scholar 

  • Grabner M, von Morstein O, Rappold D, Gunster W, Beysel G, Meyer B (2010) Constructability study on a German reference IGCC power plant with and without CO(2)-capture for hard coal and lignite. Energy Convers Manag 51:2179–2187

    Article  Google Scholar 

  • Grathwohl S, Lemp O, Schnell U, Maier J, Scheffknecht G, Kluger F (2009) Highly flexible burner concept for oxyfuel combustion. 1st international oxyfuel combustion conference 7–11 September 2009, Cottbus, Germany

    Google Scholar 

  • Hohlfeld A, Katthöfer V, Kühleis C, Olaniyon A, Thorne C, Weiß J (2011) Kohlendioxidemissionen der emissionshandelspflichtigen stationären Anlagen im Jahr 2010 in Deutschland. Deutsche Emissionshandelsstelle

    Google Scholar 

  • IEA (2000) World energy outlook 2000. International Energy Agency OECD/IEA, http://www.iea.org

  • IEA (2006) World energy outlook 2006. International Energy Agency OECD/IEA, http://www.iea.org

  • IEA (2008a) CO2 capture in the cement industry. IEA Greenhouse Gas R&D Programme, Report number 2008/3

    Google Scholar 

  • IEA (2008b) Energy technology perspectives – scenarios & strategies to 2050. International Energy Agency OECD/IEA, Paris, http://www.iea.org

  • IEA (2008c) World energy outlook 2008. International Energy Agency OECD/IEA, http://www.iea.org

  • IEA (2009) World energy outlook 2009. International Energy Agency OECD/IEA, http://www.iea.org

  • IEA (ed) (2010) Energy technology perspectives – scenarios & strategies to 2050. International Energy Agency OECD/IEA, Paris, http://www.iea.org

  • IEA (2011) World energy outlook 2011. International Energy Agency OECD/IEA, http://www.iea.org

  • IPCC (2005) Carbon dioxide capture and storage – special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Irons R, Davison J, Sekkapaan G, Gibbins J (2007a) Implications of building ‘capture ready’ power plants. 3rd international conference on clean coal technologies for our future, Cagliari, Sardinia

    Google Scholar 

  • Irons R, Sekkappan G, Panesar R, Gibbins J, Lucquiaud M (2007b) CO2 capture ready plants. Technical Study Report Nr. 2007/4, IEA Greenhouse Gas R&D Programme

    Google Scholar 

  • Kather A, Klostermann M (2011) CO2 capture via the oxyfuel process with cryogenic air. In: Scherer V, Stolten D (eds) Efficient carbon capture for coal power plants. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Kather A, Rafailidis S, Hermsdorf C, Klostermann M, Maschman A, Mieske K, Oexmann J, Pfaff I, Rohloff J (2008) Research and development needs for clean coal deployment. IEA Clean Coal Centre, London

    Google Scholar 

  • Kluger F, Mönckert P, Krohmer B, Stramatelopoulos G, Jacoby J, Burchardt U (2009) Oxyfuel pulverized coal steam generator development – 30 MWth pilot steam generator commissioning and testing. 1st international oxyfuel combustion conference, 7–11 September 2009, Cottbus, Germany

    Google Scholar 

  • Kneer R, Toporov D, Forster M, Christ D, Broeckmann C, Pfaff E, Zwick M, Engels S, Modigell M (2010) OXYCOAL-AC: towards an integrated coal-fired power plant process with ion transport membrane-based oxygen supply. Energy Environ Sci 3:198–207

    Article  CAS  Google Scholar 

  • Kozak F, Petig A, Morris E, Rhudy R, Thimsen D (2009) Chilled ammonia process for CO2 capture. Energy Procedia 1:1419–1426

    Article  CAS  Google Scholar 

  • Kunze C, Spliethoff H (2010) Modelling of an IGCC plant with carbon capture for 2020. Fuel Process Technol 91:934–941

    Article  CAS  Google Scholar 

  • Kvamsdal HM, Jakobsen JP, Hoff KA (2009) Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture. Chem Eng Process Process Intensif 48:135–144

    Article  CAS  Google Scholar 

  • Linnenberg S, Kather A (2009) Evaluation of an integrated post-combustion CO2 capture process for varying loads in a coal-fired power plant using monoethanolamine. 4th international conference on clean coal technologies, 18–21 May 2009, Dresden

    Google Scholar 

  • Lyngfelt A, Mattisson T (2011) Chemical looping materials for CO2-separation. In: Scherer V, Stolten D (eds) Efficient carbon capture for coal power plants. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Markewitz P, Schreiber A, Zapp P, Vögele S (2009) Kohlekraftwerke mit CO2-Abscheidung: Strategien, Rahmenbedingungen und umweltseitige Auswirkungen. Zeitschrift für Energiewirtschaft 33:31–41

    Article  Google Scholar 

  • Markewitz P, Bongartz R, Birnbaum U, Linssen J, Vögele S (2011a) Energy technologies 2050: R&D priority setting of coal fired power plants in Germany. Conference on clean coal technologies CCT 2011. IEA Clean Coal Centre, Zaragoza

    Google Scholar 

  • Markewitz P, Kuckshinrichs W, Hake JF, Fischer W, Bongartz R, Martinsen D, Pesch T, Vögele S (2011b) Transformation des Stromerzeugungssystems mit forciertem Ausstieg aus der Kernenergie – Ein Beitrag zur Diskussion nachhaltiger Energiesysteme nach dem Reaktorunfall in Fukushima. STE Research Report 06/2011, Forschungszentrum Jülich

    Google Scholar 

  • Markewitz P, Kuckshinrichs W, Leitner W, Müller TE, Linssen J, Zapp P (2012) Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci 5:7281–7305

    Article  CAS  Google Scholar 

  • Mckinsey (2007) Kosten und Potenziale der Vermeidung von Treibhausgasemissionen in Deutschland – Sektorperspektive Industrie. In: Klimaschutz SIAVBI-WFD (ed) Studie im Auftrag von BDI initiativ-Wirtschaft für den Klimaschutz. Studie im Auftrag von BDI initiativ-Wirtschaft für den Klimaschutz ed.: Mc Kinsey & Company, Inc

    Google Scholar 

  • Ploumen P (2006) Retrofit of CO2 capture at coal-fired power plants in the Netherlands. In: IEA-GHG (ed) 8th International conference on greenhouse gas control technologies, 19th–21st June 2006. IEA GHG, Trondheim

    Google Scholar 

  • Rao AB, Rubin ES (2002) A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol 36:4467–4475

    Article  CAS  Google Scholar 

  • Reijerkerk S, Nijmeijer K, Potreck J, Simons K, Wessling M (2011) Polymer membranes for CO2-separation. In: Scherer V, Stolten D (eds) Efficient carbon capture for coal power plants. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Reissner H (2009) Flue gas desulpherization as a key requirement of PCC. International RWE symposium on post combustion capture. Neuss 30.-31.07.2009

    Google Scholar 

  • Renzenbrink W, Evers J, Keller D, Wolf KJ, Apel W (2008) RWE’s 450 MW IGCC/CCS project – status and outlook. Energy Procedia 1:615–622

    Article  Google Scholar 

  • Rubin ES, Chen C, Rao AB (2007) Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy 35:4444–4454

    Article  Google Scholar 

  • RWE (2009) The need for smart megawatts – power generation in Europe. Facts and trends. RWE AG, Essen

    Google Scholar 

  • Scherer V, Franz J (2011) CO2 separation via pre-combustion utilizing membranes in coal power plants. In: Scherer V, Stolten D (eds) Efficient carbon capture for coal power plants. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Stadler H, Beggel F, Habermehl M, Persigehl B, Kneer R (2011) Oxyfuel coal combustion by efficient integration of oxygen transport membranes. Int J Greenh Gas Control 5:7–15

    Article  CAS  Google Scholar 

  • Stolten D, Scherer V (eds) (2011) Efficient carbon capture for coal power plants. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Ströhle J, Galloy A, Epple P (2008) Feasibility study on the carbonate looping process for post-combustion CO2 capture from coal-fired power plants. Energy Procedia 1:1313–1320

    Article  Google Scholar 

  • Tigges KD, Klauke F, Bergins C, Busekrus K, Niesbach J, Ehmann M, Kuhr C, Hoffmeister F, Vollmer B, Buddenberg T, Wu S, Kukoski A (2009) Conversion of existing coal-fired power plants to oxyfuel combustion: Case study with experimental results and CFD-simulations. Energy Procedia 1:549–556

    Article  CAS  Google Scholar 

  • Trautmann G, Döring M, Heim M, Schneider PG (2007) Optimierung des dynamischen Verhaltens kohlefebeuerter Kraftwerke. VDI Bericht Nr. 180

    Google Scholar 

  • Trudeau N (2011) Technology roadmap: carbon capture and storage in industrial applications. Challenges and opportunities of CO2 capture & storage in the iron and steel industry. Steel Institute VDEh Germany, Düsseldorf

    Google Scholar 

  • UNIDO (2010) Carbon capture and storage in industrial applications: technology synthesis report. Working paper of the United Nations Industrial Development Organisation (UNIDO) – November 2010, http://www.unido.org

  • Urban W, Lohmann H, Girod K (2012) BMBF Verbundprojekt “Biogaseinspeisung”. In: Forschung BFBU (ed) Fraunhofer- Institut UMSICHT, BASE Technologies GmbH

    Google Scholar 

  • van Straelen J, Geuzebroek N, Goodchild G, Protopapas L, Mahony L (2009) CO2 capture for refineries – a practical approach. Energy Procedia 1:179–185

    Article  Google Scholar 

  • White V, Armstrong P, Fogash K (2009) Oxygen supply for oxyfuel CO2 capture. 1st international oxyfuel conference, 7–9 September 2009, Cottbus, Germany

    Google Scholar 

  • Wietschel M, Arens M, Dötsch C, Herkel S, Krewitt W, Markewitz P, Möst D, Scheufen M (eds) (2010) Energietechnologien 2050 – Schwerpunkte für Forschung und Entwicklung: Technologiebericht. Fraunhofer Verlag, Karlruhe

    Google Scholar 

  • Wirtschaftsvereinigung Stahl (2011) Stahlmarkt Deutschland. Available: http://www.stahl-online.de/

  • ZEP (2008) EU demonstration programme for CO2 capture and storage (CCS) – ZEP’s proposal. In: European Technology Platform for Zero Emission Fossil Fuel Power Plants (ZEP) (ed) Brussels, http://www.zero-emissionplatform.eu/website/docs/ETP%20ZEP/EU%20Demonstration%20Programme%20for%20CCS%20-%20ZEP’s%20Proposal.pdf, 15 Aug 2012

  • Zhao L, Menzer R, Riensche E, Blum L, Stolten D (2009) Concepts and investment cost analyses of multi-stage membrane systems used in post-combustion processes. Energy Procedia 1:269–278

    Article  CAS  Google Scholar 

  • Zhao L, Riensche E, Blum L, Stolten D (2011) How gas separation membrane competes with chemical absorption in postcombustion capture. Energy Procedia 4:629–636

    Article  CAS  Google Scholar 

  • Ziaii S, COHEN S, Rochelle GT, Edgar TF, Weber ME (2009) Dynamic operation of amine scrubbing in response to electricity demand and pricing. Energy Procedia 1:4047–4053

    Article  CAS  Google Scholar 

  • Ziesing J (2011a) Der erwartete Rückschlag für den Klimaschutz: Weltweite CO2-Emissionen 2010 kräftig gestiegen. Energiewirtschaftliche Tagesfragen 61:67–78

    Google Scholar 

  • Ziesing J (2011b) Kräftiger Anstieg der CO2-Emissionen in Deutschland. Energiewirtschaftliche Tagesfragen 61:61–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Markewitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Markewitz, P., Bongartz, R. (2015). Carbon Capture Technologies. In: Kuckshinrichs, W., Hake, JF. (eds) Carbon Capture, Storage and Use. Springer, Cham. https://doi.org/10.1007/978-3-319-11943-4_2

Download citation

Publish with us

Policies and ethics