Skip to main content

Extensional Crisis and Proving Identity

  • Conference paper
Automated Technology for Verification and Analysis (ATVA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8837))

Abstract

Extensionality axioms are common when reasoning about data collections, such as arrays and functions in program analysis, or sets in mathematics. An extensionality axiom asserts that two collections are equal if they consist of the same elements at the same indices. Using extensionality is often required to show that two collections are equal. A typical example is the set theory theorem ( ∀ x)( ∀ y)x ∪ y = y ∪ x.Interestingly, while humans have no problem with proving such set identities using extensionality, they are very hard for superposition theorem provers because of the calculi they use.In this paper we show how addition of a new inference rule, called extensionality resolution, allows first-order theorem provers to easily solve problems no modern first-order theorem prover can solve. We illustrate this by running the Vampire theorem prover with extensionality resolution on a number of set theory and array problems. Extensionality resolution helps Vampire to solve problems from the TPTP library of first-order problems that were never solved before by any prover.

This research was supported in part by the European Research Council (ERC) under grant agreement 267989 (QUAREM), the Swedish VR grant D0497701, the Austrian National Research Network RiSE (FWF grants S11402-N23 and S11410-N23), and the WWTF PROSEED grant ICT C-050.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Experimental results of this paper, http://vprover.org/extres

  2. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New Results on Rewrite-Based Satisfiability Procedures. ACM Trans. Comput. Log. 10(1) (2009)

    Google Scholar 

  3. Bachmair, L., Ganzinger, H.: Resolution Theorem Proving. In: Handbook of Automated Reasoning, pp. 19–99. Elsevier and MIT Press (2001)

    Google Scholar 

  4. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational Theorem Proving for Hierarchic First-Order Theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB) (2010), www.SMT-LIB.org

  7. Baumgartner, P., Waldmann, U.: Hierarchic Superposition with Weak Abstraction. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 39–57. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Bledsoe, W.W., Boyer, R.S.: Computer Proofs of Limit Theorems. In: Proc. of IJCAI, pp. 586–600 (1971)

    Google Scholar 

  9. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s Decidable About Arrays? In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. de Moura, L., Bjørner, N.: Generalized, efficient array decision procedures. In: FMCAD, pp. 45–52. IEEE (2009)

    Google Scholar 

  12. Ganzinger, H., Korovin, K.: Theory Instantiation. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 497–511. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Habermehl, P., Iosif, R., Vojnar, T.: What Else Is Decidable about Integer Arrays? In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 474–489. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Korovin, K.: iProver – An Instantiation-Based Theorem Prover for First-Order Logic (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Kovács, L., Voronkov, A.: First-Order Theorem Proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, ch. 7, pp. 371–443. Elsevier Science (2001)

    Google Scholar 

  17. Prevosto, V., Waldmann, U.: SPASS+T. In: Proc. of ESCoR, pp. 18–33 (2006)

    Google Scholar 

  18. Riazanov, A., Voronkov, A.: Limited Resource Strategy in Resolution Theorem Proving. J. of Symbolic Computation 36(1-2), 101–115 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rümmer, P.: E-Matching with Free Variables. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 359–374. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Schulz, S.: System Description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. J. Autom. Reasoning 43(4), 337–362 (2009)

    Article  MATH  Google Scholar 

  22. Sutcliffe, G., Suttner, C.: The State of CASC. AI Communications 19(1), 35–48 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gupta, A., Kovács, L., Kragl, B., Voronkov, A. (2014). Extensional Crisis and Proving Identity. In: Cassez, F., Raskin, JF. (eds) Automated Technology for Verification and Analysis. ATVA 2014. Lecture Notes in Computer Science, vol 8837. Springer, Cham. https://doi.org/10.1007/978-3-319-11936-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11936-6_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11935-9

  • Online ISBN: 978-3-319-11936-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics