Skip to main content

An Efficient Approach of Multi-Relational Data Mining and Statistical Technique

  • Conference paper
  • 3696 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 327))

Abstract

The objective of data mining is to find the useful information from the huge amounts of data. Many researchers have been proposed the different algorithms to find the useful patterns but one of the most important drawbacks they have found that data mining techniques works for single data table. This technique is known as traditional data mining technique. In this era almost all data available in the form of relational database which have multiple tables and their relationships. The new data mining technique has emerged as an alternative for describing structured data such as relational data base, since they allow applying data mining in multiple tables directly, which is known as Multi Relational data mining. To avoid the more number joining operations as well as the semantic losses the researchers bound to use Multi Relational Data Mining approaches. In this paper MRDM focuses multi relational association rule, Multi relational decision tree construction, Inductive logic program (ILP) as well three statistical approaches. We emphasize each MR-Classification approach as well as their characteristics, comparisons as per the statistical values and finally found the most research challenging problems in MRDM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kantrardzic, M.: Data Mining: Concepts Models, and Algorithms. Wiley, New Jersyey (2003)

    Google Scholar 

  2. Garcia-Molina, H., Ulman, J.D.: Database Systems. The complete bopectok prentice Halll (2002)

    Google Scholar 

  3. Fayyad, U., Piatesky-Shapiaro, G., Padharic, S., et al.: From data mining to Knowledge Discovery, pp. 1–34. An overview The MIIT,Press (1996)

    Google Scholar 

  4. Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cambridge (1996)

    Google Scholar 

  5. Valencio, F.T., et al.: Human-Centric Computing and Information Science (2012), http://www.hcis-journals.com

  6. Dzeroski, S., Raedt, L.D., Wrobel, S.: Multi-Relational data mining workshop report ACM SIGKDD, Exploration News letter 5(2), 200–202 (2003), doi:doi:1011415/980972981007

    Google Scholar 

  7. Domingos, P.: Prospect and challenges for Multi-Relational data mining. ACM SIGKDD Exploration News Letter 5(1) (2003)

    Google Scholar 

  8. Cook, D., Holder, L.: Graph-Based Data Mining. Intelligent Systems & their Applications 15(2), 32–41 (2000)

    Article  Google Scholar 

  9. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent substructures from graph data. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Matsuda, T., Horiuchi, T., Motoda, H., Washio, T., et al.: Graph-bases induction for general graph structured data. In: Proceedings of DS 1999, pp. 340–342 (1999, 2000)

    Google Scholar 

  11. Kavuruchu, Y., Senkul, P., Totoslu, I.H.: A comparative study of ILP-based concept discovery system. Expert System with Applications 38, 11598–11607 (2011)

    Article  Google Scholar 

  12. Mutlu, A., Senkul, P., Kavuruchu, Y.: Improving the scalability of ILP-based multi-relational concept discovery system through parallelization. Knowledge Based System 27, 352–368 (2012), www.elsevier.com/locate/knosys

    Article  Google Scholar 

  13. Blockeel, H., De Raedt, L., Jacobs, N., Demoen, B.: Scaling up inductive logic programming by learning from interpretations. Data Mining and Knowledge Discovery 3(1), 59–93 (1999)

    Article  Google Scholar 

  14. Džeroski, S.: Inductive Logic Programming and Knowledge Discovery in Databases. AAAI Press (1996)

    Google Scholar 

  15. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient substructure discovery from large semi-structured data. In: Proceedings of DM 2002 (2002)

    Google Scholar 

  16. Miyahara, T., Shoudai, T., Uchida, T., Takahashi, K., Ueda, H.: Discovery of frequent tree structured patterns in semi structured web documents. In: Proceedings PAKDD 2001, pp. 47–52 (2001)

    Google Scholar 

  17. Džeroski, S., Lavrač, N.: Relational Data Mining. Springer (2001)

    Google Scholar 

  18. Knobbe, A.J., de Haas, M., Siebes, A.: Propositionalisation and aggregates. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, p. 277. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Knobbe, A.J., Siebes, A., Van Der Wallen, D.: Multi-relational decision tree induction. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 378–383. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Leiva, H., Atramentov, A., Honavar, V.: Experiments with MRDTL – A Multi-relational Decision Tree Learning Algorithm. In: Proceedings of Workshop MRDM 2002 (2002)

    Google Scholar 

  21. Washio, T., Motoda, H.: State of the Art of Graph based Data Mining

    Google Scholar 

  22. Knobbe, A.J., Siebes, A., Van Der Wallen, D.: Multi-relational decision tree induction. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 378–383. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  23. Bickel, S., Scheffer, T.: Proceedings of the IEEE Conference on Data Mining (2004)

    Google Scholar 

  24. Cao, S.-Z.: 2012 International Conference on Page(s) of IEEE Xplore Systems and Informatics (ICSAI), Hangzhou, China, pp. 2251–2254. Healthcare Inf. Eng. Res. Center, Zhejiang Univ (2012)

    Google Scholar 

  25. Draper, W.R., Hawley, C.E., McMahon, B.T., Reid, C.A.: Journal of Occupational Rehabilitation published by Springer Link -(2013)

    Google Scholar 

  26. Grahne, G., Zhu, J.F.: Fast algorithms for frequent itemset mining using FPtrees. IEEE Transactions on Knowledge and Data Engineering 17(10), 1347–1362 (2005)

    Article  Google Scholar 

  27. Chung, D.W.-L., Han, J., Ng, V.T.Y., Fu, A.W.-C., Fu, Y. (1996)

    Google Scholar 

  28. Yi, X., Zhang, Y.: Privacy-preserving distributed association rule mining via semi-trusted mixer. Data & Knowledge Engineering 63, 550–567 (2007)

    Article  Google Scholar 

  29. Girish, K., Palshikar, A., Mandar, S., Kale, B., Apte, M.M.: Association rules mining using heavy itemsets. Elsevier (2006)

    Google Scholar 

  30. Liu, X., Zhai, K., Pedrycz, W.: An improved association rules mining method (2011)

    Google Scholar 

  31. Guo, O., Viktor, H.L.: Mining Relational Databases with Multi-view Learning

    Google Scholar 

  32. Yin, X., Han, J., Yang, J.: Efficient Classification from Multiple Database Relations: A cross Mine Approach. IEEE Transaction on Knowledge and Data Engineering 18, 770–783 (2006)

    Article  Google Scholar 

  33. Zhang, S., Wu, X., Zhang, C.: Multi-database mining. IEEE Computational Intelligence Bulletin 2(1), 5–13 (2003)

    Google Scholar 

  34. De Marco, J.: Excel’s data import tools. Pro Excel 2007 VBA, p. 43. Apress (2008) ISBN 1590599578

    Google Scholar 

  35. Domingos, P.: Prospects and Challenges for Multirelational Data Mining,SIGKDD Exploration, vol. 4(2)

    Google Scholar 

  36. Zhang, W.: Multi-Relational Data Mining Based on Higher-Order Inductive Logic Programming. IEEE Computer Society Global Congress on Intelligent Systems (2009)

    Google Scholar 

  37. Padhy, N., Panigrahi, R.: Multirelationa data mining approach: a data mining techniques. International Journal of Computer Applications 57(17), 975–8887 (2012)

    Google Scholar 

  38. Aggarwal, C.C., Wang, H. (eds.): Managing and Mining Graph Data, Advances in Database Systems. Springer Science Business Media, LLC 2010 (2010)

    Google Scholar 

  39. Liu, M., Guo, H.-F., Chen, Z.: On Multi-Relational Data Mining for Foundation of Data Mining, May 13-16, pp. 389–395. Nebraska Univ, Omaha (2007)

    Google Scholar 

  40. Spyropoulou, E., De Bie, T.: Interesting pattern mining in multi-relational data, Birlinghoven, 53754, Sankt Augustin, Germany. Springer (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelamadhab Padhy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Padhy, N., Panigrahi, R. (2015). An Efficient Approach of Multi-Relational Data Mining and Statistical Technique. In: Satapathy, S., Biswal, B., Udgata, S., Mandal, J. (eds) Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Advances in Intelligent Systems and Computing, vol 327. Springer, Cham. https://doi.org/10.1007/978-3-319-11933-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11933-5_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11932-8

  • Online ISBN: 978-3-319-11933-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics