Skip to main content

The Method of Matched Asymptotic Expansions and Its Generalizations

  • Chapter
  • First Online:

Abstract

Milton Van Dyke’s Perturbation Methods in Fluid Mechanics [490] was effectively both the earliest and the most influential book specifically about applied singular perturbations. (Some credit might be given earlier fluid dynamics textbooks, e.g., Hayes and Probstein [199]). Van Dyke extensively surveyed the large extant aeronautical and fluid dynamical literature, forcefully advocating and clarifying the so-called method of matched asymptotic (or inner and outer) expansions . Although Van Dyke acknowledged that Prandtl’s boundary layer theory was the prototype singular perturbation problem, he introduced the subject by describing incompressible fluid flow past a thin airfoil. The book’s highlight message, sometimes called Van Dyke’s magic rule , states:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.J. Ablowitz, Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  2. R.C. Aiken (ed.), Stiff Computation (Oxford University Press, Oxford, 1985)

    MATH  Google Scholar 

  3. D.V. Anosov, On limit cycles in systems of differential equations with a small parameter in the highest derivatives. Am. Math. Soc. Trans. 33(2), 233–276 (1963)

    MATH  Google Scholar 

  4. Z. Artstein, I.G. Kevrekides, M. Slemrod, E.S. Titi, Slow observables of singularly perturbed differential equations. Nonlinearity 20, 2463–2481 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Z. Artstein, J. Linshiz, E.S. Titi, Young measure approach to computing slowly-advancing fast oscillations. Multiscale Model Sim. 6, 1085–1097 (2007)

    MathSciNet  Google Scholar 

  6. U.M. Ascher, L.R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations (SIAM, Philadelphia, 1998)

    MATH  Google Scholar 

  7. U.M. Ascher, R.M.M. Mattheij, R.D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, NJ, 1988)

    MATH  Google Scholar 

  8. W. Balser, Formal Power Series and Linear Systems of Meromorphic Differential Equations (Springer, New York, 2000)

    MATH  Google Scholar 

  9. G.I. Barenblatt, Scaling (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  10. R. Bellman, Introduction to Matrix Analysis, 2nd edn. (McGraw-Hill, New York, 1970)

    MATH  Google Scholar 

  11. C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978)

    MATH  Google Scholar 

  12. V.N. Bogaevski, A. Povzner, Algebraic Methods in Nonlinear Perturbation Theory (Springer, New York, 1991)

    MATH  Google Scholar 

  13. F. Brauer, J. Nohel, The Qualitative Theory of Ordinary Differential Equations: An Introduction (Benjamin, New York, 1969)

    MATH  Google Scholar 

  14. V.F. Butuzov, A.B. Vasil’eva, N.N. Nefedov, Asymptotic theory of contrast structures (review). Autom. Remote Control 58, 1068–1091 (1997)

    Google Scholar 

  15. V.F. Butuzov, N.N. Nefedov, K.R. Schneider, Singularly perturbed boundary value problems for systems of Tikhonov’s type in the case of exchange of stability. J. Differ. Equ. 159, 427–446 (1999)

    MATH  MathSciNet  Google Scholar 

  16. M. Canalis-Durand, J.P. Ramis, R. Schaefke, Y. Sibuya, Gevrey solutions of singularly perturbed differential equations. J. Reine Angew Math. 518, 95–129 (2000)

    MATH  MathSciNet  Google Scholar 

  17. G. Carrier, Perturbation methods, in Handbook of Applied Mathematics, 2nd edn., ed. by C.E. Pearson (Van Nostrand Reinhold, New York, 1990), pp. 747–814

    Google Scholar 

  18. L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, 2nd edn. (Springer, Berlin, 1963)

    MATH  Google Scholar 

  19. K.W. Chang, F.A. Howes, Nonlinear Singular Perturbation Phenomena: Theory and Application (Springer, New York, 1984)

    Google Scholar 

  20. C. Chicone, Inertial and slow manifolds for delay equations with small delays. J. Differ. Equ. 190, 364–406 (2003)

    MATH  MathSciNet  Google Scholar 

  21. E.A. Coddington, N. Levinson, A boundary value problem for a nonlinear differential equation with a small parameter. Proc. Am. Math. Soc. 3, 73–81 (1952)

    MATH  MathSciNet  Google Scholar 

  22. E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955)

    MATH  Google Scholar 

  23. J.D. Cole, Perturbation Methods in Applied Mathematics (Blaisdell, Waltham, MA, 1968)

    MATH  Google Scholar 

  24. W.A. Coppel, Stability and Asymptotic Behavior of Differential Equations (Heath, Boston, 1965)

    MATH  Google Scholar 

  25. J.G. van der Corput, Introduction to the neutrix calculus. J. d’Analyse Math. 7, 281–398 (1959)

    Google Scholar 

  26. J. Cousteix, J. Mauss, Asymptotic Analysis and Boundary Layers (Springer, Berlin, 2007)

    MATH  Google Scholar 

  27. C.F. Curtiss, J.O. Hirschfelder, Integration of stiff equations. Proc. Natl. Acad. Sci. 38, 235–243 (1952)

    MATH  MathSciNet  Google Scholar 

  28. M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. Osinga, M. Wechselberger, Mixed-mode oscillations with multiple time scales. SIAM Rev. 54, 211–288 (2012)

    MATH  MathSciNet  Google Scholar 

  29. R.L. Devaney, Singular perturbations of complex polynomials. Bull. Am. Math. Soc. 50, 391–429 (2013)

    MATH  MathSciNet  Google Scholar 

  30. F. Diener, M. Diener, Nonstandard Analysis in Practice (Springer, Berlin, 1995)

    MATH  Google Scholar 

  31. F.W. Dorr, S.V. Parter, L.F. Shampine, Applications of the maximum principle to singular perturbation problems. SIAM Rev. 15, 43–88 (1973)

    MATH  MathSciNet  Google Scholar 

  32. F. Dumortier, R. Roussarie, Canard cycles and center manifolds. Memoirs Am. Math. Soc. 577 (1996)

    Google Scholar 

  33. Weinan E., Principles of Multiscale Modeling (Cambridge University Press, Cambridge, 2011)

    MATH  Google Scholar 

  34. W. Eckhaus, Matched Asymptotic Expansions and Singular Perturbations (North-Holland, Amsterdam, 1973)

    MATH  Google Scholar 

  35. W. Eckhaus, Asymptotic Analysis of Singular Perturbations (North-Holland, Amsterdam, 1979)

    MATH  Google Scholar 

  36. W. Eckhaus, Fundamental concepts of matching. SIAM Rev. 36, 431–439 (1994)

    MATH  MathSciNet  Google Scholar 

  37. T. Erneux, Applied Delay Differential Equations (Springer, New York, 2009)

    MATH  Google Scholar 

  38. N. Fenichel, Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 15, 77–105 (1979)

    MathSciNet  Google Scholar 

  39. N. Fenichel, Global uniqueness in geometric singular perturbation theory. SIAM J. Math. Anal. 16, 1–6 (1985)

    MATH  MathSciNet  Google Scholar 

  40. J.E. Flaherty, R.E. O’Malley, Jr., Numerical methods for stiff systems of two-point boundary value problems. SIAM J. Sci. Stat. Comput. 5, 865–886 (1984)

    MATH  MathSciNet  Google Scholar 

  41. L. Flatto, N. Levinson, Periodic solutions of singularly perturbed systems. J. Ration. Mech. Anal. 4, 943–950 (1955)

    MATH  MathSciNet  Google Scholar 

  42. L.E. Fraenkel, On the method of matched asymptotic expansions. Proc. Camb. Phil. Soc. 65, 209–284 (1969)

    MATH  MathSciNet  Google Scholar 

  43. L.S. Frank, On a singularly perturbed eigenvalue problem in the theory of elastic rods. SIAM J. Math. Anal. 21, 1245–1263 (1990)

    MATH  MathSciNet  Google Scholar 

  44. S. Franz, H.-G. Roos, The capriciousness of numerical methods for singular perturbations. SIAM Rev. 53, 157–173 (2011)

    MATH  MathSciNet  Google Scholar 

  45. A. Fruchard, R. Schäfke, Composite asymptotic expansions and turning points of singularly perturbed ordinary differential equations, vol. 2066 of Lect. Notes in Math. (Springer, Berlin, 2012)

    Google Scholar 

  46. C.W. Gear, T.J. Kaper, I.G. Kevrekidis, A. Zagaris, Projecting to a slow manifold: singularly perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst. 4, 711–732 (2005)

    MATH  MathSciNet  Google Scholar 

  47. D.A. Goussis, The role of slow system dynamics in predicting the degeneracy of slow invariant manifolds: The case of vdP relaxation oscillations. Phys. D 248, 16–32 (2013)

    MATH  MathSciNet  Google Scholar 

  48. Z.-M. Gu, N.N. Nefedov, R.E. O’Malley, Jr., On singular singularly-perturbed initial value problems. SIAM J. Appl. Math. 49, 1–25 (1989)

    MATH  MathSciNet  Google Scholar 

  49. S. Haber, N. Levinson, A boundary value problem for a singularly perturbed differential equation. Proc. Am. Math. Soc. 6, 866–872 (1955)

    MATH  MathSciNet  Google Scholar 

  50. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd revised edn. (Springer, Berlin, 2010)

    Google Scholar 

  51. G.H. Handelman, J.B. Keller, R.E. O’Malley, Jr., Loss of boundary conditions in the asymptotic solution of linear ordinary differential equations, I: Eigenvalue problems. Comm. Pure Appl. Math. 21, 243–266 (1968)

    MATH  MathSciNet  Google Scholar 

  52. W.A. Harris, Jr., Singular perturbations of two-point boundary value problems for systems of ordinary differential equations. Arch. Ration. Mech. Anal. 5, 212–225 (1960)

    MATH  Google Scholar 

  53. S.P. Hastings, J.B. McLeod, Classical Methods in Ordinary Differential Equations: with Applications to Boundary Value Problems (Amer. Math. Soc, Providence, 2012)

    Google Scholar 

  54. W.D. Hayes, R.F. Probstein, Hypersonic Flow Theory (Academic Press, New York, 1959)

    MATH  Google Scholar 

  55. E. Hille, Analytic Function Theory, vol. 2 (Ginn, Boston, 1962)

    MATH  Google Scholar 

  56. E.J. Hinch, Perturbation Methods (Cambridge University Press, Cambridge, 1991)

    MATH  Google Scholar 

  57. M.H. Holmes, Introduction to Perturbation Methods, 2nd edn. (Springer, New York, 2013)

    MATH  Google Scholar 

  58. M. Holzer, T.J. Kaper, An analysis of the renormalization group method for asymptotic expansions with logarithmic switchback terms. Adv. Differ. Equ. 19(3/4), 245–282 (2014)

    MATH  MathSciNet  Google Scholar 

  59. F.C. Hoppensteadt, Singular perturbations on the infinite interval. Trans. Am. Math. Soc. 123, 521–535 (1966)

    MATH  MathSciNet  Google Scholar 

  60. F.C. Hoppensteadt, Analysis and Simulation of Chaotic Systems, 2nd edn. (Springer, New York, 2000)

    MATH  Google Scholar 

  61. F.C. Hoppensteadt, Quasi-static State Analysis of Differential, Difference, Integral, and Gradient Systems, vol. 21 of Courant Lecture Notes (Amer. Math. Soc, Providence, RI, 2010)

    Google Scholar 

  62. R.A. Horn, C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1991)

    MATH  Google Scholar 

  63. F.A. Howes, Boundary-interior layer interactions in nonlinear singular perturbation theory. Memoirs Am. Math. Soc. 203, 1–108 (1978)

    MathSciNet  Google Scholar 

  64. F.A. Howes, Some singularly perturbed superquadratic boundary value problems whose solutions exhibit boundary and shock layer behavior. Nonlinear Anal. Theory Methods Appl. 4, 683–698 (1980)

    MATH  MathSciNet  Google Scholar 

  65. P.-F. Hsieh, Y. Sibuya, Basic Theory of Ordinary Differential Equations (Springer, New York, 1999)

    MATH  Google Scholar 

  66. A.M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems (Amer. Math. Soc, Providence, RI, 1992)

    Google Scholar 

  67. E.M. de Jager, Jiang Furu, The Theory of Singular Perturbations (Elsevier, Amsterdam, 1996)

    Google Scholar 

  68. R.S. Johnson, Singular Perturbation Theory: Mathematical and Analytical Techniques with Applications to Engineering (Springer, New York, 2005)

    Google Scholar 

  69. C.K.R.T. Jones, A.I. Khibnik, editors., Multiple-Time-Scale Dynamical Systems (Springer, New York, 2001)

    Google Scholar 

  70. T.J. Kaper, An introduction to geometric methods and dynamical systems theory for singular perturbation problems, in Analyzing Multiscale Phenomena using Singular Perturbation Methods, ed. by J. Cronin, R.E. O’Malley, Jr. (Amer. Math. Soc., Providence, 1999), pp. 85–131

    Google Scholar 

  71. S. Kaplun, Low Reynolds number flow past a circular cylinder. J. Math. Mech. 6, 595–603 (1957)

    MATH  MathSciNet  Google Scholar 

  72. M.J. Kaplun, My Son Saul: Saul Kaplun, July 3,1924–February 13, 1964 in Memoriam (Shengold, New York, 1965)

    Google Scholar 

  73. S. Kaplun, Fluid Mechanics and Singular Perturbations. P. A. Lagerstrom, L. N. Howard, and C. S. Liu, editors. (Academic Press, New York, 1967)

    Google Scholar 

  74. H.K. Khalil, Nonlinear Systems (Prentice-Hall, Upper Saddle River, NJ, 1996)

    Google Scholar 

  75. P.V. Kokotović, H.K. Khalil, J. O’Reilly, Singular Perturbation Methods in Control (Academic Press, London, 1986)

    MATH  Google Scholar 

  76. N.J. Kopell, Waves, shocks, and target patterns in an oscillating chemical reagent, in Nonlinear Diffusion, ed. by W.E. Fitzgibbon III, H.F. Walker (Pitman, London, 1977), pp. 129–154

    Google Scholar 

  77. N.J. Kopell, L.N. Howard, Plane wave solutions to reaction-diffusion equations. Stud. Appl. Math. 52, 291–328 (1973)

    MATH  MathSciNet  Google Scholar 

  78. N.V. Kopteva, E. O’Riordan, Shishkin meshes in the numerical solution of singularly perturbed differential equations. Int. J. Numer. Anal. Model. 7(3), 393–415 (2010)

    MATH  MathSciNet  Google Scholar 

  79. I. Kosiuk, P. Szmolyan, Scaling in singular perturbation problems: Blowing up a relaxation oscillator. SIAM J. Appl. Dyn. Syst. 10, 1307–1343 (2011)

    MATH  MathSciNet  Google Scholar 

  80. H.-O. Kreiss, Difference methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 15, 21–58 (1978)

    MATH  MathSciNet  Google Scholar 

  81. M. Krupa, P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points–fold and canard points in two dimensions. SIAM J. Math. Anal. 33(2), 286–314 (2001)

    MATH  MathSciNet  Google Scholar 

  82. C. Kuehn, Multiple-Time-Scale Dynamics (to appear)

    Google Scholar 

  83. H.T. Kung, J.F. Traub, All algebraic functions can be computed fast. J. ACM 25, 245–260 (1978)

    MATH  MathSciNet  Google Scholar 

  84. J.G.L. Laforgue, R.E. O’Malley, Jr., Shock layer movement for Burgers’ equation. SIAM J. Appl. Math. 55, 332–347 (1995)

    MATH  MathSciNet  Google Scholar 

  85. P.A. Lagerstrom, Matched Asymptotic Expansions (Springer, New York, 1988)

    MATH  Google Scholar 

  86. R. Lamour, R. März, C. Tischendorf, Differential-Algebraic Equations: A Projector Based Analysis (Springer, Berlin, 2013)

    Google Scholar 

  87. N. Levinson, Perturbations of discontinuous solutions of nonlinear systems of differential equations. Acta Math. 82, 71–106 (1951)

    MathSciNet  Google Scholar 

  88. Z. Levinson, in Recountings: Conversations with MIT Mathematicians, ed. by J. Segel (A. K. Peters, Wellesley, MA, 2009), pp. 1–24

    Google Scholar 

  89. C.C. Lin, L.A. Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences (Macmillan, New York, 1974)

    MATH  Google Scholar 

  90. T. Linss, Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems, vol. 1985 of Lecture Notes in Math (Springer, Heidelberg, 2010)

    Google Scholar 

  91. J.-L. Lions, Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal, vol. 1973 of Lecture Notes in Math (Springer, Berlin, 1973)

    Google Scholar 

  92. L.L. Lo, The meniscus on a needle–a lesson in matching. J. Fluid Mech. 132, 65–78 (1983)

    MATH  MathSciNet  Google Scholar 

  93. S.A. Lomov, Introduction to the General Theory of Singular Perturbations, vol. 112 of Translations of Mathematical Monographs (Amer. Math. Soc., Providence, RI, 1992)

    Google Scholar 

  94. J. Lorenz, Analysis of difference schemes for a stationary shock problem. SIAM J. Numer. Anal. 21, 1038–1053 (1984)

    MATH  MathSciNet  Google Scholar 

  95. R.E. Meyer, A view of the triple deck. SIAM J. Appl. Math. 43, 639–663 (1983)

    MATH  MathSciNet  Google Scholar 

  96. J.J.H. Miller, E. O’Riordan, G.I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, revised edn. (World Scientific, Singapore, 2012)

    Google Scholar 

  97. P.D. Miller, Applied Asymptotic Analysis (Amer. Math. Soc., Providence, RI, 2006)

    MATH  Google Scholar 

  98. J. Moser, Singular perturbation of eigenvalue problems for linear differential equations of even order. Comm. Pure Appl. Math. 8, 251–278 (1955)

    MATH  MathSciNet  Google Scholar 

  99. P.N. Müller, K.-D. Reinsch, R. Bulirsch, On the complete solution of ɛ y″ = y 3. J. Optim. Theory Appl. 80, 367–372 (1994)

    MATH  MathSciNet  Google Scholar 

  100. J.A. Murdock, Perturbations: Theory and Methods (Wiley-Interscience, New York, 1991)

    MATH  Google Scholar 

  101. J.D. Murray, Mathematical Biology, I. An Introduction, 3rd edn. (Springer, New York, 2002)

    Google Scholar 

  102. A. Narang-Siddarth, J. Valasek, Nonlinear Multiple Time Scale Systems in Standard and Nonstandard Forms: Analysis and Control (SIAM, Philadelphia, 2014)

    Google Scholar 

  103. K. Nipp, Breakdown of stability in singularly perturbed autonomous systems: I. orbit equations, II. estimates for the solutions and application. SIAM J. Math. Anal. 17, 512–532 and 1068–1085 (1986)

    Google Scholar 

  104. K. Nipp, An algorithmic approach for solving singularly perturbed initial value problems. Dyn. Rep. 1, 173–263 (1988)

    MathSciNet  Google Scholar 

  105. K. Nipp, D. Stoffer, Invariant Manifolds in Discrete and Continuous Systems (European Math. Soc., Zürich, 2013)

    MATH  Google Scholar 

  106. J.J. O’Connor, E.F. Robertson, MacTutor History of Mathematics Archive (University of St. Andrews, Fife, 2013). URL http://www-history.mcs.st-and.ac.uk/

  107. M.A. O’Donnell, Boundary and corner layer behavior in singularly perturbed semilinear systems of boundary value problems. SIAM J. Math. Anal. 15, 317–332 (1984)

    MATH  MathSciNet  Google Scholar 

  108. A.B. Olde Daalhuis, S.J. Chapman, J.R. King, J.R. Ockendon, R.H. Tew, Stokes phenomena and matched asymptotic expansions. SIAM J. Appl. Math. 55, 1469–1483 (1995)

    MATH  MathSciNet  Google Scholar 

  109. R.E. O’Malley, Jr., Introduction to Singular Perturbations (Academic Press, New York, 1974)

    MATH  Google Scholar 

  110. R.E. O’Malley, Jr., Singular Perturbation Methods for Ordinary Differential Equations (Springer, New York, 1991)

    MATH  Google Scholar 

  111. R.E. O’Malley, Jr., L.V. Kalachev, Regularization of nonlinear differential-algebraic equations. SIAM J. Math. Anal. 25, 615–629 (1994)

    MATH  MathSciNet  Google Scholar 

  112. R.E. O’Malley, Jr., M.J. Ward, Exponential asymptotics, boundary layer resonance, and dynamic metastability, in Mathematics is for Solving Problems, ed. by L.P. Cook, V. Roytburd, M. Tulin (SIAM, Philadelphia, 1996), pp. 189–203

    Google Scholar 

  113. W. Paulsen, Asymptotic Analysis and Perturbation Theory (CRC Press, Boca Raton, FL, 2014)

    MATH  Google Scholar 

  114. A. Pokrovskii, V. Sobolev, A naive view of time relaxation and hysteresis, in Singular Perturbations and Hysteresis, ed. by M.P. Mortell, R.E. O’Malley, Jr., A. Pokrovskii, V. Sobolev (SIAM, Philadelphia, 2005), pp. 1–59

    Google Scholar 

  115. L.S. Pontryagin, Asymptotic behavior of the solutions of systems of differential equations with a small parameter in the highest derivatives. Am. Math. Soc. Transl. (2) 18, 295–319 (1961)

    Google Scholar 

  116. I. Proudman, J.R.A. Pearson, Expansions at small Reynolds numbers for the flow past a sphere and a cylinder. J. Fluid Mech. 2, 237–262 (1957)

    MATH  MathSciNet  Google Scholar 

  117. J.-P. Ramis, Séries divergentes et théories asymptotiques. In Panoramas et Synthèses, vol. 121 (Soc. Math. France, Paris, 1993), pp. 1–74

    Google Scholar 

  118. L.G. Reyna, M.J. Ward, On the exponentially slow motion of a viscous shock. Comm. Pure Appl. Math. 48, 79–120 (1995)

    MATH  MathSciNet  Google Scholar 

  119. A.J. Roberts, Modelling Emergent Dynamics in Complex Systems (to appear)

    Google Scholar 

  120. H.-G. Roos, M. Stynes, L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, 2nd edn. (Springer, Berlin, 2008)

    MATH  Google Scholar 

  121. D. Schattschneider, M. C. Escher: Visions of Symmetry (W. H. Freeman, New York, 2004)

    Google Scholar 

  122. D. Schattschneider, The mathematical side of M. C. Escher. Not. Am. Math. Soc. 57(6), 706–718 (2010)

    MATH  MathSciNet  Google Scholar 

  123. A. Schissel, The development of asymptotic solutions of linear ordinary differential equations, 1817–1920. Arch. Hist. Exact Sci. 16, 307–378 (1977)

    Google Scholar 

  124. C. Schmeiser, Finite deformation of thin beams. Asymptotic and perturbation methods. IMA J. Appl. Math. 34, 155–164 (1985)

    MATH  MathSciNet  Google Scholar 

  125. L.W. Schwartz, Milton Van Dyke, the man and his work. Ann. Rev. Fluid Mech. 34, 1–18 (2002)

    Google Scholar 

  126. L.A. Segel, L. Edelstein-Keshet, A Primer on Mathematical Methods in Biology (SIAM, Philadelphia, 2013)

    Google Scholar 

  127. L.A. Segel, M. Slemrod, The quasi-steady state assumption: A case study in perturbation. SIAM Rev. 31, 446–477 (1989)

    MATH  MathSciNet  Google Scholar 

  128. E. Shchepakina, V. Sobolev, M.P. Mortell, Singular Perturbations: Introduction to system order reduction methods with applications, vol. 2114 of Lecture Notes in Math. (Springer, Berlin, 2014)

    Google Scholar 

  129. J. Shen, M. Han, Canard solution and its asymptotic approximation in a second-order nonlinear singularly-perturbed boundary value problem with a turning point. Comm. Nonlinear Sci. Numer. Simulat. 19, 2632–2643 (2014)

    MathSciNet  Google Scholar 

  130. G.I. Shishkin, L.P. Shishkina, Difference Methods for Singular Perturbation Problems (CRC Press, Boca Raton, FL, 2009)

    MATH  Google Scholar 

  131. C. Shubin, Singularly perturbed integral equations. J. Math. Anal. Appl. 313, 234–250 (2006)

    MATH  MathSciNet  Google Scholar 

  132. Y. Sibuya, The Gevrey asymptotics in the case of singular perturbations. J. Differ. Equ. 165, 255–314 (2000)

    MATH  MathSciNet  Google Scholar 

  133. Y. Sibuya, Formal power series solutions in a parameter. J. Differ. Equ. 190, 559–578 (2003)

    MATH  MathSciNet  Google Scholar 

  134. L.A. Skinner, Singular Perturbation Theory (Springer, New York, 2011)

    MATH  Google Scholar 

  135. D.R. Smith, Singular-Perturbation Theory: An Introduction with Applications (Cambridge University Press, Cambridge, 1985)

    MATH  Google Scholar 

  136. I.J. Sobey, Introduction to Interactive Boundary Layer Theory (Oxford University Press, Oxford, 2000)

    MATH  Google Scholar 

  137. K. Soetaert, J. Cash, F. Mazzia, Solving Differential Equations in R (Springer, Berlin, 2012)

    MATH  Google Scholar 

  138. H.L. Turrittin, My mathematical expectations, Lecture Notes in Mathematics 312, 1–22 (1973)

    MathSciNet  Google Scholar 

  139. M. Van Dyke, Perturbation Methods in Fluid Dynamics (Academic Press, New York, 1964)

    Google Scholar 

  140. M. Van Dyke, Perturbation Methods in Fluid Dynamics, Annotated edn. (Parabolic Press, Stanford, CA, 1975)

    Google Scholar 

  141. M. Van Dyke, Nineteenth-century roots of the boundary-layer idea. SIAM Rev. 36, 415–424 (1994)

    MATH  MathSciNet  Google Scholar 

  142. A.B. Vasil’eva, Asymptotic methods in the theory of ordinary differential equations containing small parameters in front of the higher derivatives. USSR Comp. Math. Math. Phys. 3, 823–863 (1963)

    Google Scholar 

  143. A.B. Vasil’eva, On the development of singular perturbation theory at Moscow State University and elsewhere. SIAM Rev. 36, 440–452 (1994)

    Google Scholar 

  144. A.B. Vasil’eva, V.F. Butuzov, L.V. Kalachev, The Boundary Function Method for Singular Perturbation Problems (SIAM, Philadelphia, 1995)

    Google Scholar 

  145. A.B. Vasil’eva, V.F. Butuzov, N.N. Nefedov, Singularly perturbed problems with boundary and internal layers. Proc. Steklov Inst. Math. 268, 258–273 (2010)

    Google Scholar 

  146. A.E.P. Veldman, Matched asymptotic expansions and the numerical treatment of viscous-inviscid interaction. J. Eng. Math 39, 189–206 (2001)

    MATH  MathSciNet  Google Scholar 

  147. F. Verhulst, Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics (Springer, New York, 2005)

    Google Scholar 

  148. F. Verhulst, Periodic solutions and slow manifolds. Int. J. Bifurcat. Chaos 17, 2533–2540 (2007)

    MATH  MathSciNet  Google Scholar 

  149. M.I. Vishik, L.A. Lyusternik, On the asymptotic behavior of the solutions of boundary value problems for quasilinear differential equations. Dokl. Acad. Nauk SSR 121, 778–781 (1958)

    MATH  Google Scholar 

  150. M.I. Vishik, L.A. Lyusternik, The solution of some perturbation problems for matrices and self-adjoint or non-selfadjoint differential equations I. Russ. Math. Surv. 15(3), 1–75 (1960)

    MATH  MathSciNet  Google Scholar 

  151. M.I. Vishik, L.A. Lyusternik, Regular degeneration and boundary layer for linear differential equations with a small parameter. Am. Math. Soc. Transl. (2) 2(20), 239–364 (1961)

    Google Scholar 

  152. W. Wasow, On the asymptotic solution of boundary value problems for ordinary differential equations containing a parameter. J. Math. and Phys. 23, 173–183 (1944)

    MathSciNet  Google Scholar 

  153. W. Wasow, Asymptotic expansions for ordinary differential equations: Trends and problems, in Asymptotic Solutions of Differential Equations and their Applications, ed. by C.H. Wilcox (Academic Press, New York, 1964), pp. 3–26

    Google Scholar 

  154. W. Wasow, Asymptotic Expansions for Ordinary Differential Equations (Wiley-Interscience, New York, 1965)

    MATH  Google Scholar 

  155. W. Wasow, The capriciousness of singular perturbations. Nieuw Arch. Wisk. 18, 190–210 (1970)

    MATH  MathSciNet  Google Scholar 

  156. W.R. Wasow, On boundary layer problems in the theory of ordinary differential equations. PhD thesis, New York University, New York, 1942

    Google Scholar 

  157. R.B. White, Asymptotic Analysis of Differential Equations (Imperial College Press, London, 2010)

    MATH  Google Scholar 

  158. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

    MATH  Google Scholar 

  159. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. (Springer, New York, 2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

O’Malley, R.E. (2014). The Method of Matched Asymptotic Expansions and Its Generalizations. In: Historical Developments in Singular Perturbations. Springer, Cham. https://doi.org/10.1007/978-3-319-11924-3_3

Download citation

Publish with us

Policies and ethics