Skip to main content

Ligninolytic Enzymes for Water Depollution, Coal Breakdown, and Paper Industry

  • Chapter
  • First Online:
CO2 Sequestration, Biofuels and Depollution

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 5))

Abstract

Lignin breakdown modifies lignocellulose structure to produce smaller carbohydrates usable for further bioconversion. White rot fungi produces ligninolytic enzymes such as lignin peroxidase, manganese peroxidase, laccases and versatile peroxidase, which efficiently mineralize lignin. We review applications of ligninolytic enzymes. Applications include delignification of lignocellulose, removal of organic pollutants, wastewater treatment, dye decolorization, soil treatment, breakdown of coal into low molecular weight fractions, biopulping and biobleaching in paper industries, and enzymatic polymerization in polymer industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acunzo DF, Galli C (2003) First evidence of catalytic mediation by phenolic compounds in the laccaseinduced oxidation of lignin models. J Eur Biochem 270:3634–3640

    Google Scholar 

  • Adam W, Lazarus M, Saha Moller CR, Weichold O, Hoch U, Haring D, Schreier P (1999) Biotransformations with peroxidases. Adv Biochem Eng Biotechnol 63:74–108

    Google Scholar 

  • Adler E (1977) Lignin chemistry-past, present and future. J Wood Sci Technol 11:169–218

    CAS  Google Scholar 

  • Akthar MN, Mohan PM (1995) Bioremediation of toxic metal ions from polluted lake waters and industrial effluents by fungal biosorbent. Curr Sci 69:1018–1030

    Google Scholar 

  • Amitai G, Adami R, Moriah GS, Rabinovtz I, Vincze A, Leader H, Chefetz B, Leibovitz-Persky L, Friesem D, Hadar Y (1998) Oxidative biodgradation of phosphorothiolates by fungal laccase. FEBS Lett 438:195–200

    CAS  Google Scholar 

  • Annibale AD, Rosetto F, Leonatdii V, Federici F, Petruccioli M (2006) Role of autochthonus filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 72:28–36

    Google Scholar 

  • Archibald F, Paice MG, Jurasek L (1990) Decolourization of kraft bleachery effluent chromophores by coriolus (Trametes) versicolor. Enzyme Microb Technol 12:846–853

    Google Scholar 

  • Asgher M, Kausar S, Bhatti HN, Shah SAH, Ali M (2008) Optimization of medium for decolorization of solar golden yellow R direct textile dye by Schizophyllum commune IBL-06. Int Biodeter Biodeg 61:189–193

    CAS  Google Scholar 

  • Baciocchi E, Fabbri C, Lanzalunga O (2003) Lignin peroxidase production by Phanerochaete chrysosporium INA-12 by temperature shifting. Appl Environ Microbiol 54:3194–3196

    Google Scholar 

  • Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157

    CAS  Google Scholar 

  • Bajpai P (2004) Biological bleaching of chemical pulps. Critical Rev in Biotechnol 24:1–58

    Google Scholar 

  • Baldrian P (2004) Purification and characterization of laccase from the white rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme. Appl Microbiol Biotechnol 63:560–563

    CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases-occurance and properties. FEMS Microbiol Rev 30:215–242

    CAS  Google Scholar 

  • Bao W, Eukushima Y, Jensen KA, Moen MA, Hammel KE (1994) Oxidative degradation of nonphenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett 354:297–300

    CAS  Google Scholar 

  • Boer CG, Obici L, Giatti C, Souza CG, Rosane M, Peralta M (2004) Decolorization of synthetic dyes by solid-state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main ligninolytic enzymes. Bioresour Technol 94:107–112

    CAS  Google Scholar 

  • Bogan BW, Lamar RT (1995) One electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phenerochaete chrysosporium. Appl Environ Microbiol 61:2631–2835

    CAS  Google Scholar 

  • Bogan BW, Lamar RT (1996) Polycyclic aromatic hydrocarbons degrading capabilities of Phenerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl Environ Microbiol 62:1597–1603

    CAS  Google Scholar 

  • Bogan BW, Lamar RT, Hammel KE (1996) Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Appl Environ Microbiol 62:1788–1792

    CAS  Google Scholar 

  • Bollag JM (1992) Decontaminating soil with enzymes. Environ Sci Technol 26:1876

    CAS  Google Scholar 

  • Boominathan K, Reddy CA (1992) Fungal degradation of lignin: biotechnological applications. In: Arora DK, Elander RP, Mukerji KG (ed) Handbook of applied mycology, vol 4. Marcel Dekker Inc., New York, pp 763–822

    Google Scholar 

  • Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates: an expanded role of laccase in lignin biodegradation. FEBS Lett 267:99–102

    CAS  Google Scholar 

  • Bourbannais R, Paice MG (1996) Enzymatic delignification of kraft pulp using laccase and a mediator. TAPPI J 79:199–204

    Google Scholar 

  • Bourbannais R, Paice MG, Freiermuth B, Brodie E, Borneman S (1997) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl Environ Microbiol 63:4627–4623

    Google Scholar 

  • Breen A, Singleton FL (1999) Fungi in lignocellulose breakdown and biopulping. Current Opin Biotechnol 10:252–258

    Google Scholar 

  • Bumpus JA, Aust SD (1987) Biodegradation of DDT (1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane) by the white-rot fungus Phenerochaete chrysosporium. Appl Environ Microbiol 53:2001–2008

    CAS  Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    CAS  Google Scholar 

  • Call HP, Mucke I (1997) History, overview and applications of mediated Ligninolytic systems, especially laccase-mediator systems (Lignozym(R)-Process). J Biotechnol 53:163–202

    CAS  Google Scholar 

  • Camarero S, Bockle B, Martinez MJ, Martinez AT (1996) Manganese-mediated lignin degradation by Pleurotus pulmonarius. Appl Environ Microbiol 62:1070–1072

    CAS  Google Scholar 

  • Camarero S, Gareia, Vidal T, Colom J, Delrio JC, Gutiertez A, Gras JM, Monje R, Martinez MJ, Martinez AT (2004) Efficient bleaching of non wood high quality paper pulp using laccase-mediator system. Enzyme Microbiol Technol 35:113–120

    CAS  Google Scholar 

  • Caramelo L, Martinez MJ, Martinez AT (1999) A search for ligninolytic peroxidases in the fungus Pleurotus eryngii involving alpha-keto-y-thiomethylbutyric acid and lignin model dimers. Appl Environ Microbiol 65:916–922

    CAS  Google Scholar 

  • Catcheside DEA, Ralph JP (1999) Biological processing of coal. Appl Microbiol Biotechnol 53:16–24

    Google Scholar 

  • Cavalieri EL, Rogan EG (1985) Role of radical cations in aromatic hydrocarbon carcinogenesis. Envion Health Perspect 64:69–84

    CAS  Google Scholar 

  • Cenek N, Katerina S, Pavla E, Tomas C, Aparna K, Elke L, Vaclav S (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36:1545–1551

    Google Scholar 

  • Chance B (1952) The kinetics and stoichiometry of the transition from primary to the secondary peroxidase peroxide complex Arch Biochem Biophys 41:416–424

    CAS  Google Scholar 

  • Chivukula M, Renganathan V (1995) Phenolic azo-dye oxidation by laccase from Pyricularia orizai. Appl Environ Microbiol 61:4374–4377

    CAS  Google Scholar 

  • Chivukula M, Spadaro JT, Renganathan V (1995) Lignin peroxidase catalysed oxidation of sulfonated azo dyes generates novel sulfophenyl hydroperoxidases. Biochemistry 34:7765–7772

    CAS  Google Scholar 

  • Christian V, Shrivastava R, Shukla D, Modi H, Rajiv B, Vyas M (2005) Mediator role of veratryl alcohol in the lignin peroxidase catalysed oxidative decolorization of remazol brilliant blue R. Enzyme Microb Technol 36:426–431

    CAS  Google Scholar 

  • Christov LP, Van Driessel B, Du Plessis CA (1999) Fungal biomass from Rhizomucor pulsillus as adsorbent of chromophores from a bleach plant effluent. Process Biochem 35:91–95

    CAS  Google Scholar 

  • Cohen MS, Gabriele PB (1982) Degradation of coal by the fungi Polyporus versicplor and Poria monticola. Appl Environ Microbiol. 44: 23–27

    CAS  Google Scholar 

  • Coniglio A, Galli C, Gentili P (2008) Oxidation of amides by laccase- generated aminoxyl radicals. J Mol Catal B Enzymatic 50:40–49

    CAS  Google Scholar 

  • Conto SR, Harrera JLT (2006) Industrial and biotechnological appliations of laccase: a review. Biotecnol Adv 24:500–513

    Google Scholar 

  • Crestini C, Argyropoulos DS (1998) The early oxidative biodegradation steps of residual kraft lignin models with laccase. Biorg Med Chem 6:2161–2169

    CAS  Google Scholar 

  • Dafale N, Nageswara RN, Sudhir U (2008) Decolorization of azodyes and simulated dye bath wastewater using acclimatized micro-bial consortium biostimulation and halo tolerance. Bioresour Technol 99:2552–2558

    CAS  Google Scholar 

  • Dahiya JS, Singh D, Nigam P (1998) Characterization of laccase produced by Coniothyrium minitans. J Basic Microbiol 38:349–359

    CAS  Google Scholar 

  • Davis JM, Lohmann RC, Phillips FM, Wilson JL, Love DW (1993) Architecture of the sierra ladrones formation, central new mexico: depositional controls on the permeability correlation structure. Geol Soc Amer Bull 105(8):998–1007

    Google Scholar 

  • Dec J, Bollag JM (1994) Use of plant material for the decontamination of water polluted with phenols. Biotechnol Bioeng 44:1132–1139

    CAS  Google Scholar 

  • Dec J, Bollag JM (1995) Effect of various factors on dehalogenation of chlorinated phenols and anilines during oxidative coupling. Environ Sci Technol 29:657–663

    CAS  Google Scholar 

  • Dezotti M, Innocentini-Mei LH, Duran N (1995) Silica immobilized enzyme catalysed removal of chlorolignin from Eucalyptus kraft effluent. J Biotechnol 43:161–167

    CAS  Google Scholar 

  • Dunford HB (1991) Horseradish peroxidase: Structure and kinetic properties. In: Everse J, Everse KE, Grisham MB (eds). CRC Press, Boca Raton, pp 1–24

    Google Scholar 

  • Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase like compounds in waste water and soil treatment. Appl Catal B 28:83–89

    CAS  Google Scholar 

  • Dwivedi UN, Singh P, Pandey VP, Kumar A (2011) Structure-function relationship among bacterial, fungal and plant laccases. J Mol Catal B Enzymatic 68:117–128

    CAS  Google Scholar 

  • Dwran N, Minussi RC, Pastore GM, Alves OL, Gimenes IF, Peralta-zamora P, Moraes SG (2000) Laccase production and its environmental applications in the presence of mediators In: Soares CH (ed) Proceedings of the second national meeting of Environmental Applied Microbiology, vol 2. Florianopolis, p 12

    Google Scholar 

  • Edwards SL, Raag R, Wariishi H, Michael HG, Thomas LP (1993) Crystal structure of lignin peroxidase. Proc Natl Acad Sci U S A 90:750–754

    CAS  Google Scholar 

  • Eibes G, Cajthaml T, Moreira MT, Feijoo G, Lema JM (2006) Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere 64:408–414

    CAS  Google Scholar 

  • Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) Crystal structure of a bacterial endospore coat component: a laccase with enhanced thermostability properties. J Biol Chem 278:19416–19425

    CAS  Google Scholar 

  • Eriksson KE, Kirk TK (1994) Biopulping: an overview of developments in an environmentally safe paper making technology. FEMS Microbiol Rev 13:351–364

    Google Scholar 

  • Erkurt EA, Ãœnyayar A, Kumbur H (2007) Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochem 42(10):1429–1435

    CAS  Google Scholar 

  • Esposito E, Resende MOO, Freer J, Baeza J, Carvalho ME (1995) Ligninnolytic enzymes application on humic acid organochloride compounds association. In: Melo EHM, Pimentel MCB (eds) Proceedings of the fourth Brazilian Symposium on Chemical Lignins other Wood Comp., Brazil, vol 5, p. 251. Chem Abstr. 126:108249

    Google Scholar 

  • Esposito E, Manfio G, Villas-Boas S, Antunes R, Paulillo S, Souza JA (1997) Microbiological strategies on remediation of contaminated soil with organochlorides. In: Esposito E (ed) Proceedings of the First National Meeting of Environmental Applied Microbiology Campinas, S.P., Brazil, vol 1, p 80. Chem. Abstr. 127: 358427

    Google Scholar 

  • Esposito E, Manfio G, Villas-Boas S, Manfio G (1998) Fungal potential for soil bioremediation. In: Gaylarde CC, Barbosa TCP, Gabilan NH (eds) Proceedings of the Third Latin American Biodegradation & Biodeterioration Symposium-LABS-3, Florianopolis, Brazil, CD-Rom Paper 25

    Google Scholar 

  • Ferrer M, Dezotli ND (1991) Decolorization of kraft effluent by free and immobilized lignin peroxidase and horseradish peroxidase. Biotechnol Lett 13:577–582

    CAS  Google Scholar 

  • Ferrer I, Dezotti M, Duran N (1991) Decolorization of kraft effluent by free and immobilized lignin peroxidase and horseradish peroxidase. Biotechnol Lett 13:577–582

    CAS  Google Scholar 

  • Field JA, De Jong E, Costa GF, De Bont JAM (1993) Screening of Ligninolytic fungi applicable to biodegradation of xenobiotics. Trends Biotechnol 11:44–49

    CAS  Google Scholar 

  • Frichter M, Vares T, Kalsi M, Galkin S, Scheibner K, Fritsche W, Hatakka A (1999) Production of MnP and organic acids and mineralization of 14 C-labelled lignin (14 C-DHP) during solid-state fermentation of wheat-straw with the white rot fungus Nematoloma frowardii. Appl Environ Microbiol 65:1864–1870

    Google Scholar 

  • Fritsche W, Scheibner K, Herre A, Hofrichter M (2000) Fungal degradation of explosives: TNT and related nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Nitroaromatic compounds and explosives. Lewis, Boca Raton, pp 213–237

    Google Scholar 

  • Fritz-Langhals E, Kunath B (1998) Synthesis of aromatic aldehydes by laccase-mediater assisted oxidation. Tetrahedron Lett 39:5955–5956

    CAS  Google Scholar 

  • Fujita M, Era A, Lke M, Soda S, Miyata N, Hirao T (2000) Decolorization of heat treatment liquor of waste sludge by a bioreactor using polyurethane foam immobilized white rot fungi equipped with an ultramembrane filtration unit. J Biosc Bioeng 90:387–394

    CAS  Google Scholar 

  • Fukui HTL, Presnell TW, Joyce, Chang H (1992) Dechlorination and detoxification of bleach plant effluent by Phanerochaete chrysosporium. J Biotechnol 24:267–275.

    Google Scholar 

  • Gavril M, Hodson PV (2007) Chemical evidence for the mechanism of the biodecoloration of Amaranth by Trametes versicolor. World J Microbiol Biotechnol 23:103–124

    CAS  Google Scholar 

  • Gianfreda L, Sannina F, Filazzola MT, Leonowicz A (1998) Catalytic behaviour and detoxifying ability of a laccase from the fungal strain Cerrena unicolor. J Mol Catal B Enzymatic 4:13–23

    CAS  Google Scholar 

  • Glenn JK, Akileswaran L, Gold MH (1986) Mn(II) oxidation is the principal function of the extracellular Mn-Peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophy 251:688–696

    CAS  Google Scholar 

  • Grey R, Hafer C, Schlosser D (1998) Degradation of 2-chlorophenol and formation of 2-chloro-14-benzoquinone by mycelia and cell free crude culture liquids of Trametes versicolor in relation to extracellular laccase activity. J Basic Microbiol 38:371–382

    CAS  Google Scholar 

  • Gunther T, Sack U, Hofrichter M, Latz M (1998) Oxidation of PAH and PAH-derivatives by fungal and plant oxidoreductases. J Basic Microbiol 38:113–122

    Google Scholar 

  • Haglund C (1999) Biodegradation of xenobiotic compounds by the white rot fungus Trametes trogii. Molecular Biotechnology Programme. Uppsela University School of Engineering, p 30

    Google Scholar 

  • Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr opin plant Biol 11:1–7

    Google Scholar 

  • Hammel KS, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phenerochaete chrysosporium ligninase. J Biol Chem 26:948–995

    Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    CAS  Google Scholar 

  • Harley BS, Brodo PMA, Senior PJ (1988) Proceeding of Royal Society discussion meeting on utilisation of lignocellulosic wastes. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Have RT, Rietjens IMCM, Hartmans S, Swarts HJ, Field JA (1998) Calculated ionization potentials determine the oxidation of vanillin precursors by lignin peroxidase. Federation Eur Microbiol Soc Rev 13:125–135

    Google Scholar 

  • Harvey PJ, Schoemaker HE, Palmer JM (1986) Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation by Phenerochaete chrysosporium. FEBS Lett 195:242–246

    CAS  Google Scholar 

  • Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewzyk U (1998a) Purification and characterization of peroxidases from the dye-decolrizing fungus Bjerkandera adusta. FEMS Microbiol Lett 165:43–50

    CAS  Google Scholar 

  • Heinfling A, Ruiz-Duenas FJ, Martinez MJ, Bergbauer M, Szewzyk U, Martinez AT (1998b) A study on reducing substrates of manganese oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 428:141–146

    CAS  Google Scholar 

  • Hiroshi U, Shiro K (1999) Enzymatic polymerization yields useful polyphenols. Chemtech 29:22–28

    Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466

    CAS  Google Scholar 

  • Hofrichter M, Scheibner K, Schneegab V, Fritsche W (1998) Enzymatic combustion of aromatic and aliphatic compounds by MnP from Nematoloma frowardii. Appl Environ Microbiol 64:399–404

    CAS  Google Scholar 

  • Hofrichter M, Lundell T, Hatakka A (2001) Conversion of milled pine wood by manganese peroxidase from Phlebia radiata. Appl Environ Microbiol 67:4588–4593

    CAS  Google Scholar 

  • Ishihara A, Maeshima Y, Veta H, Oishi K (1997) Decolorization of dyes by laccase, Shizuoka-ken Hammatsu Kogyo Gijuku, Senta kenkyu Hokoku 721. Chem Abstr 128:4654.

    Google Scholar 

  • Isroi, Rai M, Siti S, Claes N, Muhammad NC, Knut L, Mohammad JT (2011) Biological pretreatment of lignocelluloses with white rot fungi and its applications: a review. BioResources 6:5224–5259

    Google Scholar 

  • Joshi DK, Gold MH (1994) Oxidation of dibenzo-p-dioxin by lignin peroxidase from the basidiomycete Phenerochaete chrysosporium. Biochemistry 33:1096–10976

    Google Scholar 

  • Joshi SM, Inamalor SA, Telke AA (2010) Exploring the potential of natural bacterial consortium to degrade mixture of dyes and textile effluent. Int J Biodeter Biodegrad 64:622–628

    CAS  Google Scholar 

  • Kadhim H, Graham C, Barratt P, Evans CS, Rastall RA (1999) Removal of phenolic compounds in water using Cariolus versicolor grown on wheat bran. Enzyme Microbiol Technol 24:303–307

    CAS  Google Scholar 

  • Kang S, Shin KS, Han YH, Youn HD, Hah YC (1993) Purification and characterisation of an extracellular peroxidase from white-rot fungus Pleurotus ostreatus. Biochem Biophys Acta 1163:158–164

    CAS  Google Scholar 

  • Karimi A, Vahabzadeh F, Bonakdarpour B (2006) Use of Phanerochaete chrysosporium immobilized on Kissiris for synthetic dye decolourization: involvement of manganese peroxidase. World J Microbiol Biotechnol 22:1251–1257

    CAS  Google Scholar 

  • Kawai S, Nakagawa M, Ohashi H (1999) Aromatic ring cleavage a non-phenolic bête-O-4 lignin model dimmer by laccase of Trametes versicolor in the presence of 1-hydroxybenzotriazole. FEBS Lett 446:355–358

    CAS  Google Scholar 

  • Kedderis GL, Hollenberg PF (1983) Steady-state kinetics of chloroperoxidase-catalyzed N-demethylation reactions. J Biol chem 258:12413–12419

    CAS  Google Scholar 

  • Kersten P, Tein M, Kalyanaraman B, Kirk TK (1985) The ligninase of Phanerochaete chrysosporium generates cation radical from methoxy benzenes. J Biol chem 260:2609–2612

    CAS  Google Scholar 

  • Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK (1990) Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 268:475–480

    CAS  Google Scholar 

  • Kirk TK, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young RA, Akthar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 273–307

    Google Scholar 

  • Krikstopaitis K, Kulys J, Pederson AH, Schneider P (1998) N-substituted p-phenylenediamines as peroxidase and laccase substrates. Acta Chem Scan 52:469–474

    CAS  Google Scholar 

  • Kurakale M, Ide N, Komaki T (2007) Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper. Curr Microbiol 54:424–428

    Google Scholar 

  • Kurek B, Petit-conil M, Sigoillot JC, Herpoel I, Ruel K, Moukha S, Joseleav JP, Pennincks M, Asther M, Gazza G, Dechoudens C (2001) Treatment of high yield pulp with fungal peoxidases from laboratory to pilot scale study. In: Argyropoulos D (ed) ACS symposium series 785, oxidative delignification chemistry, fundamental and catalysis, vol 785. American Chemical Society, Washigton DC, 474–486 (Chap. 30)

    Google Scholar 

  • Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250

    CAS  Google Scholar 

  • Kwant SS, Chang JK (1998) Decolorisation of artifi cial dyes by peroxidase from the white-rot fungus Pleurotus ostreatus. Biotechnol Lett 20:569–572

    Google Scholar 

  • Lackner R, Srebotnik E, Messner K (1991) Oxidative degradation of high molecular weight chlorolignin by MnP of Phanerochaete chrysosporium. Biochem Biophys Res Comm 178:1092–1098

    CAS  Google Scholar 

  • Leontievsky A, Vares T, Lankinen P, Shergill JK, Pozdnyakova N, Myasoedova NM (1997) Blue and yellow laccases of ligninolytic fungi. FEMS Microbiol Lett 156:9–14

    CAS  Google Scholar 

  • Levin L, Papinutti L, Forchiassin F (2004) Evaluation of four Argentinean white rot fungi; their ability to produce lignin modifying enzymes and decolorize industrial dyes. Bioresour Technol 2:169–176

    Google Scholar 

  • Levin L, Forchiassin FF, Viale A (2005) Ligninolytic enzyme production and dye decolorization by Trametes trogii: application of the Plackett-Burman experimental design to evaluate nutritional requirements. Process Biochem 40:1381–1387

    CAS  Google Scholar 

  • Lisov AV, Leontievsky AA, Golovleva LA (2003) Hybrid Mn-peroxidase from the ligninolytic fungus Panus tigrinus 8/18. Isolation, substrate specificity and catalytic cycle. Biochem (Moscow) 68:1027–1035

    CAS  Google Scholar 

  • Lund M, Ragauskas AJ (2001) Enzymatic modifications of kraft lignin through oxidation coupling with water-soluble phenols. Appl Microbiol Biotechnol 55:699–703

    CAS  Google Scholar 

  • Maijala P, Mettalo A, Kleen M, Westin C, Poppius-Levin K, Herranen K, Lehto JH, Reponen P, Maentausta O, Hatakka A (2007) Treatment of softwood chips with enzymes may reduce refining energy consumption and increase surface charge of fibers. In: 10th international congress on biotechnology in the pulp and paper Industry. Madison Wisconsin, Book of Abstracts. p 65

    Google Scholar 

  • Majcherczyk A, Johannes C, Huttermann A (1999) Oxidation of aromatic alcohols by laccase from Trametes versicolor mediated by 22ʹ-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) cation radical and dication. Appl Microbiol Biotechnol 51:267–276

    CAS  Google Scholar 

  • Manzanares P, Fajardo S, Martin C (1995) Production of ligninolytic activities wheen treating paper pulp effluents by Trametes versicolor. J Biotechnol 4B:125–132

    Google Scholar 

  • Marcia JMM, Ademir CES, Helena CTR (2010) Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: A review. E J Biotechnol. doi:10.2225/vol13-issue6-fulltext-2

    Google Scholar 

  • Martinez AT (2002) Molecular biology and structure and function of lignin-degrading heme peroxidases. Enzym Microb Technol 30:425–444

    CAS  Google Scholar 

  • Martinez MJ, Martinez AT (1996) Characterization of MnP isoenzymes of Pleurotus eryngii exhibiting Mn-independent activities on 2,6-dimethoxyphenol and veratryl alcohol. In: Messner K, Srebotnik E (eds) Biotechnology in the pulp and paper Industries: Recent advances in applied and fundamental research. Facultas-Universitats, Vienna, pp 417–420

    Google Scholar 

  • Martinez MJ, Ruiz-Duenas FJ, Guillen F, Martinez AT (1996) Purification and catalytic properties of two manganese-peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237:424–432

    CAS  Google Scholar 

  • Martnez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J (2004) Genome sequence of the lignocellulose degrading fungus Phenerocheate chrysosporium strain RP78. Nature Biotechnol 22:695–700

    Google Scholar 

  • Marwaha SS, Grover R, Prakash C., Kennedy JF (1998) Continuous biobleaching of black liquor from the pulp and paper industry using an immobilised cell system. J Chem Technol Biotechnol 73:292–296

    CAS  Google Scholar 

  • Maximo C, Costa-Ferreira MC (2004) Decolourization of reactive textile dyes by Irpex lacteus and lignin modifying enzymes. Process Biochem 39:1475–1479

    CAS  Google Scholar 

  • May SW (1999) Applications of oxidoreductase. Curr Opin Biotechnol 10:370–375

    CAS  Google Scholar 

  • Mazmanci MA, Unyayar A (2005) Decolourization of reactive black 5 by Funalia trogii immobilized on Luffa cylindrical sponge. Proc Biochem 40:337–342

    CAS  Google Scholar 

  • Meera K, Yadav RSS, Yadav KDS (2002) Secretion of ligninperoxidase by Penicillium citrinum, Fusarium oxysporum and Aspergillus terreus. Indian J Exp Biol 40:802–806

    Google Scholar 

  • Messerschmidt A (1997) Multi-copper oxidases. World Scientific, Singapore

    Google Scholar 

  • Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417

    CAS  Google Scholar 

  • Michniewicz A, Ledakowicz S, Ullrich R, Hofrichter M (2008) Kinetics of the enzymatic decolorization of textile dyes by laccase from Cerrena unicolor. Dyes Pigm 77:295–302

    CAS  Google Scholar 

  • Mikolasch A, Hammer E, Jones U, Popowski K, Stielow A, Schauer F (2002) Synthesis of 3-(3,4-dihydroxy phenyl)-propionic acid derivatives by N-coupling of amines using laccase. Tetrahedron 58:7589–7593

    CAS  Google Scholar 

  • Mikolasch A, Niedermeyer THJ, Lalk M, Witt S, Seefeld S, Hammer E, Schauer F, Salazar MG, Hessel S, Julich WD, Lindoquist U (2007) Novel cephalosporins synthesized by amination of 2,5-dihydroxybenzoic acid derivatives using fungal laccases II. Chem and Pharm Bull 55:412–416

    CAS  Google Scholar 

  • Mikolasch A, Schauer F (2009) Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl Microbiol Biotechnol 82:605–624.

    Google Scholar 

  • Millis CD, Cai D, Stankovich MT, Tien M (1989) Oxidation-reduction potentials and ionization states of extracellular peroxidases from the lignin degrading fungus Phanerochaete chrysosporium. Biochem 28:8484–8489

    CAS  Google Scholar 

  • Milstein O, Huttermann A, Frund R, Ludemann HD (1994) Enzymatic copolymerization of lignin with low molecular mass compounds. Appl Miicrobiol Biotechnol 40:760–767

    CAS  Google Scholar 

  • Moreira MT, Palma C, Mielgo I, Feijoo G, Lema JM (2001) In vitro degradation of a polymeric dye (Poly R-478) by MnP. Biotechnol Bioeng 75:362–368

    CAS  Google Scholar 

  • Moreira MT, Feijoo G, Canoval J, Lema JM (2003) Semipilot-scale bleaching of kraft pulp with MnP. Wood Sci Technol 37:117–123

    CAS  Google Scholar 

  • Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YaI (2007) Laccase-mediator systems and their applications: a review. Appl Biochem Microbiol 43:523–535

    CAS  Google Scholar 

  • Nagarathnamma R, Bajpai P (1999) Decolorization and detoxification of extraction stage effluent from chlorine bleaching of kraft pulp by Rhizopus oryzae. Appl Environ Microbiol 65:1078–1082

    CAS  Google Scholar 

  • Nagarathnamma R, Bajpai P, Bajpai PK (1999) Studies on decolorization and detoxification of chlorinated lignin compounds in kraft bleaching effluents by Ceriporiopsis subvermispora. Process Biochem 34:939–948

    CAS  Google Scholar 

  • Nelson D, Elisa E (2000) Potential applications of oxidative enzymes and phenoloxidase like compounds in wastewater and soil treatment: a review. Appl Catal B: Environ 28:83–99

    Google Scholar 

  • Nilsson I, Moller A, Mattiasson B, Rubindamayugi MST, Welander U (2006) Decolorization of synthetic and real textile wastewater by the use of white-rot fungi. Enzyme Microb Technol 38:94–100

    CAS  Google Scholar 

  • Ohmomo S, Kainuma M, Sirianuntapiboon S, Aoshima I, Atthasampunna P (1988) Adsorption of melanoidin to the mycelia of Aspergillus oryzae Y-32. Agric Biol Chem 52:381–386

    CAS  Google Scholar 

  • Ozsoy HD, Unyayar A, Mazmanci MA (2005) Decolorization of reactive textile dyes drimarene blue X3LR and Remazol brilliant blue R by Funalia trogii ATCC 200800. Biodegradation 16:195–204

    Google Scholar 

  • Palma C, Moreira MT, Mielgo I, Feijoo G, Lema IM (1999) Use of a fungal bioreactor as a post treatment step for continuous decolorisation of dyes. Wat Sci Technol 40:131–136

    CAS  Google Scholar 

  • Patel VK, Yadav RSS, Yadav KDS (2007) Enzymatic characteristics of lignin peroxidases of indigenous Ligninolytic fungal strains—Part I. Indian J Biotechnol 6:553–556

    CAS  Google Scholar 

  • Pazarlioglu NK, Sariisik M, Telefoncu A (2005) Laccase production by Trametes versicolor and application to denim washing. Process Biochem 40:1673–1678

    CAS  Google Scholar 

  • Pelaez F, Martinez MJ, Martinez AT (1995) Screening of 68 species of basidiomycetes for enzymes involved in lignin degradation. Mycological Research 99:37–42

    Google Scholar 

  • Peralta-Zamora P, Moares SG, Esposito E, Antunes R, Refus J, Duran N (1998) Decolorization of pulp mill effluents with immobilized lignin and manganese peroxidase from Phenerocheate chrysosporium. Environ Technol 19:521–528

    Google Scholar 

  • Perumal K, Kalaichelvan PT (1996) Production of extracellular lignin peroxidase & laccase by Ganoderma lucidum PTK3 on sugarcane bagasse lignin. Indian J Expt Biol 34:1121–1125

    CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    CAS  Google Scholar 

  • Pothast A, Rosanau T, Koch H, Fisher K (1999) The reaction of phenolic model compounds in the laccase mediator system (LMS) investigations by matrix assisted laser desorption ionization time of flight mass spectrometry [MALDI-TOF-MS]. Holzfrschung 53:175–180

    Google Scholar 

  • Punna Payak H, Prasongsuk S, Messner K, Danmek K, Lotrakul P (2009) Polycyclic aromatic hydrocarbons (PAHs) degradation by laccase from a tropical white rot fungus Ganaderma lucidum. Afr J Biotechnol 8:5897–5900

    CAS  Google Scholar 

  • Quintanar L, Yoon J, Aznar CP, Palmer AE, Andersson KK, Britt RD, Solomon EI (2005) Spectroscopic and electronic structure studies of the trinuclear as cluster active site of the multicopper oxidase laccase: nature of its co-ordination unsaturation. J Am Chem Soc 127:13832–13845

    CAS  Google Scholar 

  • Ralph JP, Catcheside DEA (1994) Decolourisation and depolymerisation of solubilised low-rank coal by the white-rot basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 42:536–542

    CAS  Google Scholar 

  • Ralph JP, Graham LA, Catcheside DEA (1996) Extracellular oxidase and the transformation of solubilised fractions of low rank coal by wood rot fungi. Appl Microbiol Biotechnol 46:226–232

    CAS  Google Scholar 

  • Rama R, Mougin C, Boyer FD, Kollmann A, Molosse C, Sigoillot JC (1998) Biotransformation of benzo[a]pyrene in bench scale reactor using laccase of Pycnoporus cinnabarinus. Biotechnol Lett 20:1101–1104

    CAS  Google Scholar 

  • Raper JC, Sarkar JM, Bollag JM (1995) Enhanced enzymatic removal of chlorophenols in the presence of co-substrates. Water Res 29:2720–2724

    Google Scholar 

  • Regalado C, Garcia-Almendarez BE, Duarte-Vazquez MA (2004) Biotechnological applications of peroxidases. Phytochem Rev 3:243–256

    CAS  Google Scholar 

  • Renganathan V, Gold MH (1986) Spectral characterisation of the oxidized states of lignin peroxidase, an extracellular heme enzyme from white rot basidiomycete Phanerochaete chrysosporium. Biochemistry 25:1626–1631

    CAS  Google Scholar 

  • Rittstieg K, Suurnakki A, Suortti T, Kruus K, Guabitz AM, Buchart J (2003) Polymerisation of guaiacol and a phenolic β-o-4 substructure by Trametes hirsuta laccase in the presence of ABTS. Biotechnol Progess 19:1505–1509

    CAS  Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

    CAS  Google Scholar 

  • Rodriguez S, Toca JL (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513

    Google Scholar 

  • Ruiz-Duenas FJ, Martinez MJ, Martinez AT (1999) Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–236

    CAS  Google Scholar 

  • Saccomandi F, Conte P, Piccolo A (1998) Use of oxidase enzyme to increase polymerization of soil organic matter. Fresenius Environ Bull 7:537–543

    Google Scholar 

  • Sack U, Hofrichter M, Fritsche W (1997) Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. FEMS Microbiol Lett 152:227–234

    CAS  Google Scholar 

  • Sahay R, Yadav RSS, Yadav KDS (2008) Purification and characterization of extracellular laccase secreted by Pleurotus sajor-caju MTCC-141. Chin J of Biotechnol 24:2068–2073

    CAS  Google Scholar 

  • Sahay R, Yadav RSS, Yadav KDS (2009) Purification and Characterization of Laccase Secreted by L. lividus. Appl Biochem Biotechnol 157:311–320

    CAS  Google Scholar 

  • Salvachua D, Prieto A, Lopez-Abelairas M, Lu-Chau T, Martinez AT, Martinez MJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506

    CAS  Google Scholar 

  • Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotech Adv 27:185–194

    CAS  Google Scholar 

  • Sanghi R, Dixit A, Guha S (2006) Sequential batch culture studies for the decolorization of reactive dye by Coriolus versicolor. Bioresour Technol 97:396–400

    CAS  Google Scholar 

  • Sarkar S, Martinez AT, Martinez MJ (1997) Biochemical and molecular characterization of a manganese peroxidase isoenzyme from Pleurotus ostreatus. Biochem Biophys Acta 1339:23–30

    CAS  Google Scholar 

  • Sasek V (2003) Why mycoremediations have not yet come into practice.In: Sasek V, Glaser JA, Baveye P (ed) The utilization of bioremediation to reduce soil contamination: problems and solutions. Kluwer Academic Publishers, Amsterdam, pp 247–260

    Google Scholar 

  • Satwinder SM, Rajesh G, Chand P, John FK (1998) Continuous biobleaching of black liquor from the pulp and paper industry using an immobilised cell system. J Chem Technol Biotechnol 73:292–296

    Google Scholar 

  • Satyahari D, Maiti TK, Bhattacharyya BC (1994) Production of some extracellular enzymes by a lignin peroxidase-producing brown rot fungus, Polyporus ostreiformis, and its comparative abilities for lignin degradation and dye decolorization. Appl Environ Microbiol 60:4216–4218

    Google Scholar 

  • Scheibner K, Hofrichter M (1998) Conversion of aminonitrotoluenes by fungal manganese peroxidases. J Basic Microbiol 38:51–59

    CAS  Google Scholar 

  • Schweigert N, Zehnder AJB, Eggen RIL (2001) Chemical properties of catechols and their molecular modes of toxic action in cells from micro-organisms to mammals. Environ Microb 3:81–91

    CAS  Google Scholar 

  • Shanmugan V, Yadav KDS (1996) Production of extracellular lignin peroxidase by Pleurotus sajor-caju. Indian J Exp Biol 34:1164–1165

    Google Scholar 

  • Shanmugan V, Yadav KDS (1997) Production of lignin peroxidase by Rhizopus nigricans. Indian J Microbiol 37:105–106

    Google Scholar 

  • Sharma JK, Yadav M, Singh NP, Yadav KDS (2011) Purification and characterisation of lignin peroxidase from Pycnoporus sanguineus MTCC-137. Appl Biochem Microbiol 47:532–537

    CAS  Google Scholar 

  • Shuttleworth KL, Bollag JM (1986) Soluble and immobilized laccase as catalysts for the transformation of substituted phenols. Enzyme Microbial Technol 8:171–177

    CAS  Google Scholar 

  • Sigoillot C, Camarero S, Vidal T, Record E, Asther M, Colom JF and Martinez AT (2005) Comparison of different fungal enzymes for bleaching high-quality paper pulps. J Biotechnol 115:333–343

    CAS  Google Scholar 

  • Silva EM, Martins SF, Milagres AMF (2008) Extraction of manganese peroxidase produced by Lentinula edodes. Bioresour Technol 99:2471–2475

    CAS  Google Scholar 

  • Snook ME, Hamilton GA (1973) Oxidation and fragmentation of some phenyl- substituted alcohols and ethers by peroxydisulfate and Fenton’s reagent. J Am Chem Soc 96:860–869

    Google Scholar 

  • Srivastava R, Christian V, Vyas BRM (2005) Enzymatic decolorization of sulfonphthalein dyes. Enzyme Microb Technol 36:333–337

    Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2003) Degradation of Benzo[a] pyrene by the litter decomposing basidiomycete Stropharia coronilla: role of MnP. Appl Environ Microbiol 69:3957–3964

    CAS  Google Scholar 

  • Strebotnik E, Hammel KE (2000) Degradation of nonphenolic lignin by the laccase/1-hidroxy benzotriazole system. J Biotechnol 83:1–11.

    Google Scholar 

  • Sundaramoorthy M, Kishni K, Gold MH, Poulos TL (1994) The crystal structure of MnP from P.chrysosporium at 2.06-A resolution. J Biol Chem 269:32759–32767

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulose materials for ethanol production: a review. Bioresour Technol 83:1–11

    CAS  Google Scholar 

  • Svobodova K, Majcherczyk A, Novotn C, Kues U (2008) Implication of mycelium-associated laccase from Irpex lacteus in the decolorization of synthetic dyes. Bioresour Technol 99:463–471

    CAS  Google Scholar 

  • Tanaka H, Koike K, Itakura S, Enoki A (2009) Degradation of wood and enzyme production by Ceriporiopsis subvermispora. Enzyme Microb Technol 45:384–390

    CAS  Google Scholar 

  • Tauber MM, Gubitz GM, Rehorek A (2008) Degradation of azo dyes by oxidative processes: laccase and ultrasound treatment. Biores Technol 99:4213–4220

    CAS  Google Scholar 

  • Tavèar M, Svobodová K, Kuplenk J, Novotný C, Pavko A (2006) Biodegradation of azo dye RO16 in different reactors by immobilized Irpex lacteus. Acta Chim Slovenica 53:338–343.

    Google Scholar 

  • Tien M, Kirk TK (1988) Lignin Peroxidase of Phanerochaete chrysosporium: Methods in Enzymology 161:238–249

    CAS  Google Scholar 

  • Tein M, Kirk TK, Bull C, Fee JA (1986) Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds. J Biol chem 261:1687–1693

    Google Scholar 

  • Toh Y, Jia J, Yen L, Obbard JP, Ting Y (2003) Decolorization of azo dyes by white-rot fungi (WRF) isolated in Singapore. Enzyme Microb Technol 33:569–575

    CAS  Google Scholar 

  • Tuor U, Wariishi H, Schoemaker HE, Gold MH (1992) Oxidation of phenolic arylglycerol β-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an α-carbonyl model compound. Biochemistry 31:4986–4995

    CAS  Google Scholar 

  • Tychanowicz GK, Zilly A, Giatti C, Marques de Souza M, Peralta RM (2004) Decolorization of industrial dyes by solid-state cultures of Pleurotus pulmonarius. Proc Biochem 39:855–859

    CAS  Google Scholar 

  • Uan IC, Tien M (1993) Stimulation of Mn peroxidase activity: A possible role for oxalate in lignin biodegradation. Biochemistry 90:1242–1246

    Google Scholar 

  • Urek RO, Pazarlioglu NK (2005) Production and stimulation of manganese peroxidase by immobilized Phanerochaete chrysosporium. Proc Biochem 40:83–87

    CAS  Google Scholar 

  • Valli K, Wariishi H, Gold MH (1990) Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: role of veratryl alcohol in lignin biodegradation. Biochemistry. 29:8535–8539.

    Google Scholar 

  • Valli K, Brock BJ, Joshi DK, Gold MH (1992). Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:221–228

    CAS  Google Scholar 

  • Van Aken B, Hofrichter M, Scheibner K, Hatakka A, Naveau H, Agathos SN (1999) Transformation and mineralization of 2,4,6-trinitrotoluene (TNT) by manganese peroxidase from the white rot basidiomycete Phlebia radiate. Biodegradation 10:83–91

    CAS  Google Scholar 

  • Van Aken B, Cameron MD, Stahl JD, Plumat A, Naveau H, Aust SD, Agathos SN (2000) Glutathione-mediated mineralization of 14 C-labeled 2-amino-4,6-dinitrotoluene by manganese dependent peroxidase H5 from the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotecnol 54:659–664

    CAS  Google Scholar 

  • Van Driessel B, Christov L (2002) Adsorption of colour from a bleach plant effluent using biomass and cell wall fractions from Rhizomucor pusillus. J Chem Technol Biotechnol 77:155–158

    CAS  Google Scholar 

  • Vikineswary S, Abbullah N, Renuvathani M, Sekaran M, Pandey A and Jones GEB (2006) Productivity of laccase in solid substrate fermutation of selected agro-residues by Pycnoporus sanguineus. Bioresour Technol 97:171–177

    CAS  Google Scholar 

  • Vyas BRM, Vole J, Saaek V (1994) Ligninolytic enzymes of selected white-rot fungi cultivated on wheat-straw. Folia Microbiol 39:235–240

    CAS  Google Scholar 

  • Wandrey C, Lies A, Kihumbu, D (2000) Industrial biocatalysis: past, present and future. Org Proc Res Dev 4:285–290

    Google Scholar 

  • Wang Y, Vazquez-Duhalt R, Pickard MA (2003) Manganese-lignin peroxidase hybridf from Bjerkandera adust oxidizes polycyclic aromatic hydrocarbons more activity in the absence of manganese. Can J Microbiol 49:675–682

    CAS  Google Scholar 

  • Ward G, Hadar Y, Bilkis I, Dosoretz CG, (2003a) Mechanistic features of lignin peroxidase-catalysed oxidation of substituted phenols and 1,2-dimethoxyarenes. J Biol Chem 278:39726–39734

    CAS  Google Scholar 

  • Wariishi H, Valli K, Renganathan V, Gold MH (1989) Thiol mediated oxidation of nonphenolic lignin model compounds by MnP of Phanerochaete chrysosporium. J Biol Chem 264:14185–14191

    CAS  Google Scholar 

  • Wariishi H, Huang J, Dunford HB, Gold MH (1991a) Reactions of lignin peroxidase Compounds I and II with veratryl alcohol: Transient-state kinetics characterization.J Biol Chem 266:20694–20699

    CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1991b) In vitro depolymerization of lignin by MnP of Phanerochaete chrysosporium. Biochem Biophys Res Comm 176:269–275

    CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1992) Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem 267:23688–23695

    CAS  Google Scholar 

  • Wasenberg O, Kryriakides I and Agathos SN (2003) White rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Google Scholar 

  • Widsten P, Kandelbauer A (2008) Laccase applications in the forest products industry; a review. Enzyme and Microbiol Technol 42:293–307

    CAS  Google Scholar 

  • Wilson BW, Bean RM, Franz JA, Thomas BL, Cohen MS, Aronson H, Gray ET Jr. (1987) Microbial conversion of low rank coal: Characterisation of biodegraded product. Energy Fuel 1:80–84

    CAS  Google Scholar 

  • Xu F (1996) Oxidation of phenols, anilines and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35:7607–7614

    Google Scholar 

  • Xu F (2005) Application of oxidoreductase: recent progress. Ind Biotechnol 1:38–50

    CAS  Google Scholar 

  • Xu H, Lai YZ, Slomezynski D, Nakas JP, Tanenbaum SW (1997) Mediator-assisted selective oxidation of lignin model compounds by laccase from Botrytis anerea. Biotechnol Lett 19:957–960

    CAS  Google Scholar 

  • Yadav M, Yadav KDS (2007) In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology: future prospects. International publishing House Pvt. Ltd, New Delhi, pp 63–88

    Google Scholar 

  • Yadav M, Yadav P, Yadav KDS (2009a) Characterisation and coal depolymerizing activity of lignin peroxidase from Lenzitus seperia MTCC-1170. Biochemistry (Moscow) 74:1125–1131

    CAS  Google Scholar 

  • Yadav M, Yadav P, Yadav KDS (2009b) Production, purification and characterisation of lignin peroxidase from Loweporus lividus MTCC-1178. Eng life Sci 9:124–129

    CAS  Google Scholar 

  • Yadav M, Singh SK, Yadav KS, Yadav KDS (2010) Purification of lignin peroxidase from Hexagona tenuis MTCC-1119 and its kinetic properties in aqueous medium containing miscible organic solvents. Indian J Chem (Sec-B) 49B:489–494

    CAS  Google Scholar 

  • Yadav M, Singh SK, Sharma JK, Yadav KDS (2011) Oxidation of polyaromatic hydrocarbons in system containing organic solvent by lignin peroxidase from Gleophyllum striatum MTCC-1117. Environ Technol 32:1287–1294

    CAS  Google Scholar 

  • Yadav M, Singh SK, Yadava S (In press 2012) Purification, characterisation and coal depolymerising activity of lignin peroxidase from Lenzitus betulina MTCC-1183. Appl Biochem Microbiol 48:583–589.

    Google Scholar 

  • Zhao X, Hardin IR (2007) HPLC and spectrophotometric analysis of biodegradation of azo dyes by Pleurotus ostreatus. Dyes Pigm 73:322–325

    CAS  Google Scholar 

  • Zhao X, Yiping LY, Hardin I (2005) Determination of biodegradation products from sulfonated dyes by Pleurotus ostreatus using capillary electrophoresis coupled with mass spectrophoresis coupled with mass spectrometry. Biotechnol Lett 27:69–72

    CAS  Google Scholar 

  • Zhao X, Hardin IR, Hwang HM (2006) Biodegradation of a model azo disperse dye by the white rot fungus Pleurotus ostreatus. Int Biodet Biodeg 57:1–6

    CAS  Google Scholar 

  • Zorn H, Langhoff S, Scheibner M, Nimtz M, Berger RG (2003) A peroxidase from Lepista irina cleaves ß, ß- carotene to flavor compounds. J Biol Chem 384:1049–1056

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support of UGC, New Delhi through its Project no.F:4-2/2006 (BSR)/13-149/2008 (BSR) to Dr. Meera Yadav as a UGC’s Dr. D. S. Kothari Postdoctoral Fellowship is thankfully acknowledged. Dr. Sunil Kumar Singh is thankful to CSIR for awarding him RA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meera Yadav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yadav, M., Singh, S., Yadava, S., Singh Yadav, K. (2015). Ligninolytic Enzymes for Water Depollution, Coal Breakdown, and Paper Industry. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) CO2 Sequestration, Biofuels and Depollution. Environmental Chemistry for a Sustainable World, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-11906-9_10

Download citation

Publish with us

Policies and ethics