Skip to main content

An Extensible Software Architecture for Composing Motion and Task Planners

  • Conference paper
Book cover Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2014)

Abstract

This paper describes a software infrastructure for developing and composing task and motion planners. The functionality of motion planners is well defined and they provide a basic primitive on top of which it is possible to develop planners for addressing higher level tasks. It is more challenging, however, to identify a common interface for task planners, given the variety of challenges that they can be used for. The proposed software platform follows a hierarchical, object-oriented structure and identifies key abstractions that help in integrating new task planners with popular sampling-based motion planners. Examples of use cases that can be implemented within this common software framework include robotics applications such as planning among dynamic obstacles, object manipulation and rearrangement, as well as decentralized motion coordination. The described platform has been used to plan for a Baxter robot rearranging similar objects in an environment in an efficient way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion. The MIT Press (2005)

    Google Scholar 

  2. Şucan, I.A., Moll, M., Kavraki, L.E.: The Open Motion Planning Library. IEEE Robotics and Automation Magazine 19(4), 72–82 (2012)

    Article  Google Scholar 

  3. Plaku, E., Bekris, K.E., Kavraki, L.E.: OOPS for motion planning: An online open-source programming system. In: International Conference on Robotics and Automation (ICRA), Rome, Italy, pp. 3711–3716 (2007)

    Google Scholar 

  4. Diankov, R., Kuffner, J.J.: OpenRAVE: A Planning Architecture for Autonomous Robotics. Technical report, CMU-RI-TR-08-34, The Robotics Institute, CMU (2008)

    Google Scholar 

  5. Sucan, I., Chitta, S.: MoveIt! http://moveit.ros.org

  6. Hauser, K., Latombe, J.C.: Integrating task and PRM motion planning: Dealing with many infeasible motion planning queries. In: ICAPS Workshop on Bridging the Gap Between Task and Motion Planning (2009)

    Google Scholar 

  7. Koenig, S.: Creating a Uniform Framework for Task and Motion Planning: A Case for Incremental Heuristic Search. In: ICAPS Works. on Action and Motion Planning (2010)

    Google Scholar 

  8. Lozano-Perez, T., Kaebling, L.: Integrated Task and Motion Planning in Belief Space (2013)

    Google Scholar 

  9. Nedunuri, S., Prabhu, S., Moll, M., Chaudhuri, S., Kavraki, L.E.: SMT-Based Synthesis of Integrated Task and Motion Plans for Mobile Manipulation. In: ICRA (2014)

    Google Scholar 

  10. Hauser, K., Ng-Thow-Hing, V.: Randomized Multi-Modal Motion Planning for a Humanoid Robot Manipulation Task. IJRR (2011)

    Google Scholar 

  11. Kaelbling, L., Lozano-Pérez, T.: Integrated Robot Task and Motion Planning in the Now. CSAIL Technical Report (2012)

    Google Scholar 

  12. Stilman, M., Kuffner, J.J.: Planning Among Movable Obstacles with Artificial Constraints. In: WAFR (2006)

    Google Scholar 

  13. Ayan, N.F., Kuter, U., Yaman, F., Goldman, R.P.: HOTRiDE: Hierarchical ordered task replanning in dynamic environments. In: ICAPS Workshop on Planning and Plan Execution for Real-World Systems (2007)

    Google Scholar 

  14. Gaschler, A., Petrick, R.P., Kröger, T., Knoll, A., Khatib, O.: Robot task planning with contingencies for run-time sensing. In: ICRA Workshop on Combining Task and Motion Planning (2013)

    Google Scholar 

  15. Olawsky, D., Krebsbach, K., Gini, M.: An analysis of sensor-based task planning. Technical report (1995)

    Google Scholar 

  16. Bhattacharya, S., Michael, N., Kumar, V.: Distributed coverage and exploration in unknown non-convex environments. In: Martinoli, A., Mondada, F., Correll, N., Mermoud, G., Egerstedt, M., Hsieh, M.A., Parker, L.E., Støy, K. (eds.) Distributed Autonomous Robotic Systems. STAR, vol. 83, pp. 61–75. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Bekris, K.E., Tsianos, K.I., Kavraki, L.E.: Safe and distributed kinodynamic replanning for vehicular networks. Mobile Networks and Applications 14(3), 292–308 (2009)

    Article  Google Scholar 

  18. Marino, A., Parker, L.E., Antonelli, G., Caccavale, F.: A decentralized architecture for multi-robot systems based on the null-space-behavioral control with application to multi-robot border patrolling. Journal of Intelligent & Robotic Systems 71(3-4), 423–444 (2013)

    Article  Google Scholar 

  19. Stiffler, N.M., O’Kane, J.M.: A Sampling Based Algorithm for Multi-Robot Visibility-Based Pursuit-Evasion. In: IEEE Intl. Conf. on Intelligent Robots and Systems (2014)

    Google Scholar 

  20. Saha, M., Sanchez-Ante, G., Latombe, J.C., Roughgarden, T.: Planning multi-goal tours for robot arms. Int. J. Robotics Research 25(3), 207–223 (2006)

    Article  Google Scholar 

  21. Kimmel, A., Dobson, A., Littlefield, Z., Krontiris, A., Marble, J., Bekris, K.E.: PRACSYS: An Extensible Architecture for Composing Motion Controllers and Planners. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS, vol. 7628, pp. 137–148. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Koenig, N., Hsu, J., Dolha, M.: Willow Garage, Gazebo: http://gazebosim.org/

  23. Kröger, T.: Opening the door to new sensor-based robot applications—The Reflexxes Motion Libraries. In: ICRA (2011)

    Google Scholar 

  24. Willow Garage, Robot Operating System (ROS), http://www.ros.org/wiki/

  25. Bullet Physics Engine, http://bulletphysics.org

  26. van den Berg, J., Lin, M., Manocha, D.: Reciprocal Velocity Obstacles for Real-Time Multi-Agent Navigation. In: IEEE ICRA (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Littlefield, Z., Krontiris, A., Kimmel, A., Dobson, A., Shome, R., Bekris, K.E. (2014). An Extensible Software Architecture for Composing Motion and Task Planners. In: Brugali, D., Broenink, J.F., Kroeger, T., MacDonald, B.A. (eds) Simulation, Modeling, and Programming for Autonomous Robots. SIMPAR 2014. Lecture Notes in Computer Science(), vol 8810. Springer, Cham. https://doi.org/10.1007/978-3-319-11900-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11900-7_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11899-4

  • Online ISBN: 978-3-319-11900-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics