Skip to main content

Combining Complex Simulations with Realistic Virtual Testing Environments – The eRobotics-Approach for Semantics-Based Multi-domain VR Simulation Systems

  • Conference paper
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8810))

  • 4443 Accesses

Abstract

Today Virtual Reality (VR) simulation technology is a well-known field of virtual training and engineering and widely applied in research and in the industry. Multi-domain VR simulation systems cover multiple technical and visual aspects not limited to a single task or domain. While current systems mostly neglect the rendering component and provide purely functional graphics and simple virtual environments, we present the concepts of eRobotics and matching system structures to combine complex simulations and realistic virtual environments in a holistic VR simulation system. These environments not only provide attractive visual presentations, they also help to realize close-to-reality testing of virtual prototypes and positively affect the accuracy and performance of simulated components like optical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrial, J.R.: Data semantics. In: Data Base Management: Proc. of the IFIP Workshop Conference on Data Base Management, pp. 1–60 (1974)

    Google Scholar 

  2. Alemany, J., Cervera, E.: Design of high quality, efficient simulation environments for usarsim. In: Technical Report ICC 2011-10-1, University Jaume I, Spain (2011)

    Google Scholar 

  3. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Computing Surveys 40(1), 1–39 (2008)

    Article  Google Scholar 

  4. Balaguer, B., Balakirsky, S., Carpin, S., Lewis, M., Scrapper, C.: Usarsim: a validated simulator for research in robotics and automation. In: Workshop on Robot Simulators: Available Software, Scientific Applications, and Future Trends at IEEE/RSJ (2008)

    Google Scholar 

  5. Diestel, R.: Graph Theory, 4th edn. Graduate texts in mathematics, vol. 173. Springer (2012)

    Google Scholar 

  6. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley (1995)

    Google Scholar 

  7. Gyssens, M., Paredaens, J., Van Den Bussche, J., Van Gucht, D.: A graph-oriented object database model. IEEE Transactions on Knowledge and Data Engineering 6(4), 572–586 (1994)

    Article  Google Scholar 

  8. Hempe, N., Rossmann, J.: Efficient real-time generation and rendering of interactive grass and shrubs for large sceneries. In: Proc. of the 13th IASTED International Conference on Computer Graphics and Imaging (CGIM), pp. 240–247 (2012)

    Google Scholar 

  9. Hempe, N., Waspe, R., Rossmann, J.: Geometric interpretation and optimization of large semantic data sets in real-time vr applications. In: Proc. of the ASME 2012 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE), pp. 1–10 (2012)

    Google Scholar 

  10. Jain, A., Huineau, J., Lim, C., Lincoln, W., Pomarantz, M., G., Sohl, S.R.: Roams: Planetary surface rover simulation environment. In: Proc. of iSAIRAS 2003, pp. 19–23 (2003)

    Google Scholar 

  11. Keonig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Proc. of IEEERSJ International Conference on Intelligent Robots and Systems IROS, vol. 3, pp. 2149–2154 (2004)

    Google Scholar 

  12. Mendez, E., Schall, G., Havemann, S., Fellner, D., Schmalstieg, D., Junghanns, S.: Generating semantic 3d models of underground infrastructure. IEEE Computer Graphics and Applications 28(3), 48–57 (2008)

    Article  Google Scholar 

  13. Michel, O.: Cyberbotics ltd. webots tm: Professional mobile robot simulation. Int. Journal of Advanced Robotic Systems, 39–42 (2004)

    Google Scholar 

  14. Rathnam, R., Pfingsthorn, M., Birk, A.: Incorporating large scale ssrr scenarios into the high fidelity simulator usarsim. In: IEEE International Workshop on Safety, Security and Rescue Robotics, SSRR 2009, pp. 1–6 (2009)

    Google Scholar 

  15. Rossmann, J.: The virtual testbed: Latest virtual reality technologies for space robotic applications. In: Proc. of the iSAIRAS 2008, pp. 1–8 (2008)

    Google Scholar 

  16. Rossmann, J., Hempe, N., Emde, M., Steil, T.: A real-time optical sensor simulation framework for development and testing of industrial and mobile robot applications. In: Proc. of the 7th German Conference on Robotics (ROBOTIK 2012), pp. 337–342 (2012)

    Google Scholar 

  17. Roßmann, J., Wantia, N., Springer, M., Stern, O., Müller, H., Ellsiepen, M.: Rapid generation of 3d navigation maps for extraterrestrial landing and exploration missions: The virtual testbed approach. In: Proc. of the 11th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA) (2011)

    Google Scholar 

  18. Rossmann, J., Schluse, M., Schlette, C., Waspe, R.: A new approach to 3d simulation technology as enabling technology for erobotics. In: Van Impe, J.F.M., Logist, F. (eds.) 1st International Simulation Tools Conference and EXPO 2013 (2013)

    Google Scholar 

  19. Staranowicz, A., Mariottini, G.: A survey and comparison of commercial and open-source robotic simulator software. In: Proc. of the 4th International Conference on Pervasive Technologies Related to Assistive Environments, PETRA 2011, vol. 1, pp. 39–42 (2011)

    Google Scholar 

  20. Tobler, R.: Separating semantics from rendering: a scene graph based architecture for graphics applications. Visual Computer 27(6-8), 687–695 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hempe, N., Waspe, R., Rossmann, J. (2014). Combining Complex Simulations with Realistic Virtual Testing Environments – The eRobotics-Approach for Semantics-Based Multi-domain VR Simulation Systems. In: Brugali, D., Broenink, J.F., Kroeger, T., MacDonald, B.A. (eds) Simulation, Modeling, and Programming for Autonomous Robots. SIMPAR 2014. Lecture Notes in Computer Science(), vol 8810. Springer, Cham. https://doi.org/10.1007/978-3-319-11900-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11900-7_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11899-4

  • Online ISBN: 978-3-319-11900-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics