Skip to main content

Hinterland Transportation in Container Supply Chains

  • Chapter
  • First Online:
Handbook of Ocean Container Transport Logistics

Abstract

The increase in traded container volumes worldwide puts pressure on the hinterland road network, leading congestion and emission problems. This leads to a requirement to develop intermodal transportation systems. In this chapter, we analyze the most important features of such container transportation systems for the hinterland supply chain. At the network design level, we review the current state of the art and we identify avenues for future research. Among others, we highlight that the coordination of container shipments across the container supply chain is a particularly relevant issue as hinterland networks involve several actors. At the operational level, we characterize the most important factors influencing the trade-off between intermodal transportation and truck-only deliveries. In addition, we provide a case study of coordination at an intermodal barge terminal in the Netherlands. We highlight that the exchange of information is the key enabler for efficient hinterland intermodal transportation and we show that a better information system can be of crucial importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alumur, S., & Kara, B. Y. (2008). Network hub location problems: The state of the art. European Journal of Operational Research, 190, 1–21.

    Article  Google Scholar 

  • Alumur, S. A., Kara, B. Y., & Karasan, O. E. (2012a). Multimodal hub location and hub network design. Omega, 40, 927–939.

    Google Scholar 

  • Alumur, S. A., Yaman, H., & Kara, B. Y. (2012b). Hierarchical multimodal hub location problem with time-definite deliveries. Transportation Research Part E: Logistics and Transportation Review, 48, 1107–1120.

    Google Scholar 

  • Arnold, P., Peeters, D., & Thomas, I. (2004). Modelling a rail/road intermodal transportation system. Transportation Research Part E: Logistics and Transportation Review, 40, 255–270.

    Article  Google Scholar 

  • Baldacci, R., Battarra, M., & Vigo, D. (2008). Routing a heterogeneous feet of vehicles. In B. Golden, S. Raghavan, & E. Wasil (Eds.), The vehicle routing problem: Latest advances and new challenges (Chap. 1, pp. 3–27). Springer, New York.

    Google Scholar 

  • Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., & Laporte, G. (2007). Static pickup and delivery problems: A classification scheme and survey. Top, 15, 1–31.

    Article  Google Scholar 

  • Bierwirth, C., & Meisel, F. (2010). A survey of berth allocation and quay crane scheduling problems in container terminals. European Journal of Operational Research, 202(3), 615–627.

    Article  Google Scholar 

  • Blumenfeld, D. E., Burns, L. D., Diltz, J. D., & Daganzo, C. F. (1985). Analyzing trade-offs between transportation, inventory and production costs on freight networks. Transportation Research Part B: Methodological, 19, 361–380.

    Article  Google Scholar 

  • Bontekoning, Y., Macharis, C., & Trip, J. (2004). Is a new applied transportation research field emerging?––A review of intermodal rail–truck freight transport literature. Transportation Research Part A: Policy and Practice, 38, 1–34.

    Article  Google Scholar 

  • Bouchery, Y., & Fransoo, J. C. (2014). Intermodal hinterland network design with multiple actors. BETA Working paper 449, Technische Universiteit Eindhoven.

    Google Scholar 

  • Campbell, J. F. (1990). Freight consolidation and routing with transportation economies of scale. Transportation Research Part B: Methodological, 24, 345–361.

    Article  Google Scholar 

  • Campbell, J. F. (1993). Continuous and discrete demand hub location problems. Transportation Research Part B: Methodological, 27, 473–482.

    Article  Google Scholar 

  • Campbell, J. F., & O’Kelly, M. E. (2012). Twenty-five years of hub location research. Transportation Science, 46, 153–169.

    Article  Google Scholar 

  • Caris, A., Macharis, C., & Janssens, G. K. (2011). Network analysis of container barge transport in the port of Antwerp by means of simulation. Journal of Transport Geography, 19, 125–133.

    Article  Google Scholar 

  • Christiansen, M., Fagerholt, K., & Ronen, D. (2004). Ship routing and scheduling: Status and perspectives. Transportation Science, 38, 1–18.

    Article  Google Scholar 

  • Craig, A. J., Blanco, E. E., & Sheffi, Y. (2013). Estimating the CO2 intensity of intermodal freight transportation. Transportation Research Part D: Transport and Environment, 22, 49–53.

    Article  Google Scholar 

  • Crainic, T. G., & Kim, K. H. (2007). Intermodal transportation. In: C. Barnhart and G. Laporte, Transportation. Volume 14 of handbooks in operations research and management science (pp. 467–537), Amsterdam: North Holland.

    Google Scholar 

  • Crainic, T. G., Gendreau, M., & Dejax, P. (1993). Dynamic and stochastic models for the allocation of empty containers. Operations Research, 41, 102–126.

    Article  Google Scholar 

  • Da Graça Costa, M., Captivo, M. E., & Clímaco, J. (2008). Capacitated single allocation hub location problem—A bi-criteria approach. Computers & Operations Research, 35, 3671–3695.

    Article  Google Scholar 

  • Daganzo, C. F. (1987). The break-bulk role of terminals in many-to-many logistic networks. Operations Research, 35, 543–555.

    Article  Google Scholar 

  • Farahani, R. Z., Hekmatfar, M., Arabani, A. B., & Nikbakhsh, E. (2013). Hub location problems: A review of models, classification, solution techniques, and applications. Computers & Industrial Engineering, 64, 1096–1109.

    Article  Google Scholar 

  • Fazi, S. (2014). Mode selection, routing and scheduling for inland container transport, PhD Thesis, Eindhoven University of Technology, Netherlands.

    Google Scholar 

  • Fransoo, J. C., & Lee, C.-Y. (2013). The critical role of ocean container transport in global supply chain performance. Production and Operations Management, 22, 253–268.

    Article  Google Scholar 

  • Fransoo, J. C., De Langen, P. W., & Van Rooy, B. (2013). Business models and network design in hinterland transport. In J. H. Bookbinder (Ed.), Handbook of global logistics, international series in operations research & Management Science, (Vol. 181, Part 5, Chap. 15, pp. 367–389), Springer, New York.

    Google Scholar 

  • Fremont, A., & Franc, P. (2010). Hinterland transportation in Europe: Combined transport versus road transport. Journal of Transport Geography, 18, 548–556.

    Article  Google Scholar 

  • Groothedde, B., Ruijgrok, C., & Tavasszy, L. (2005). Towards collaborative, intermodal hub networks: A case study in the fast moving consumer goods market. Transportation Research Part E: Logistics and Transportation Review, 41, 567–583.

    Article  Google Scholar 

  • Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 12, 450–459.

    Article  Google Scholar 

  • Hakimi, S. L. (1965). Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Operations Research, 13, 462–475.

    Article  Google Scholar 

  • Hall, R. W. (1987a). Direct versus terminal freight routing on a network with concave costs. Transportation Research Part B: Methodological, 21, 287–298.

    Google Scholar 

  • Hall, R. W. (1987b). Comparison of strategies for routing shipments through transportation terminals. Transportation Research Part A: General, 21, 421–429.

    Google Scholar 

  • Imai, A., Nishimura, E., & Current, J. (2007). A Lagrangian relaxation-based heuristic for the vehicle routing with full container load. European Journal of Operational Research, 176(1), 87–105.

    Article  Google Scholar 

  • Ishfaq, R., & Sox, C. R. (2010). Intermodal logistics: The interplay of financial, operational and service issues. Transportation Research Part E: Logistics and Transportation Review, 46, 926–949.

    Article  Google Scholar 

  • Jarzemskis, A., & Vasiliauskas, A. V. (2010). Research on dry port concept as intermodal node. Transport, 22, 207–213.

    Google Scholar 

  • Jeong, S.-J., Lee, C.-G., & Bookbinder, J. H. (2007). The European freight railway system as a hub-and-spoke network. Transportation Research Part A: Policy and Practice, 41, 523–536.

    Google Scholar 

  • Jourquin, B., Beuthe, M., & Demilie, L. D. (1999). Freight bundling network models: Methodology and application. Transportation Planning and Technology, 23, 157–177.

    Article  Google Scholar 

  • Karlaftis, M. G., Kepaptsoglou, K., & Sambracos, E. (2009). Containership routing with time deadlines and simultaneous deliveries and pick-ups. Transportation Research Part E: Logistics and Transportation Review, 45(1), 210–221.

    Article  Google Scholar 

  • Khor, Y. S., Dohlie, K. A., Konovessis, D., & Xiao, Q. (2013). Optimum speed analysis for large containerships. Journal of Ship Production and Design, 29(3), 93–104.

    Article  Google Scholar 

  • Kim, K. H. (2005). Models and methods for operations in port container terminals. In A. Langevin & D. Riopel (Eds.), Logistics systems: Design and optimization (pp. 213–243). Berlin: Springer.

    Chapter  Google Scholar 

  • Konings, J. W. (1996). Integrated centres for the transshipment, storage, collection and distribution of goods. A survey of the possibilities for a high-quality intermodal transport concept. Transport Policy, 3, 3–11.

    Article  Google Scholar 

  • Konings, R., Kreutzberger, E., & Maras, V. (2013). Major considerations in developing a hub-and-spoke network to improve the cost performance of container barge transport in the hinterland: The case of the port of Rotterdam. Journal of Transport Geography, 29, 63–73.

    Article  Google Scholar 

  • Langevin, A., Mbaraga, P., & Campbell, J. F. (1996). Continuous approximation models in freight distribution: An overview. Transportation Research Part B: Methodological, 30, 163–188.

    Article  Google Scholar 

  • Liao, C.-H., Tseng, P.-H., & Lu, C.-S. (2009). Comparing carbon dioxide emissions of trucking and intermodal container transport in Taiwan. Transportation Research Part D, 14, 493–496.

    Article  Google Scholar 

  • Limbourg, S., & Jourquin, B. (2009). Optimal rail-road container terminal locations on the European network. Transportation Research Part E: Logistics and Transportation Review, 45, 551–563.

    Article  Google Scholar 

  • Lin, C.-C., & Lee, S.-C. (2010). The competition game on hub network design. Transportation Research Part B: Methodological, 44, 618–629.

    Article  Google Scholar 

  • Lüer-Villagra, A., & Marianov, V. (2013). A competitive hub location and pricing problem. European Journal of Operational Research, 231, 734–744.

    Article  Google Scholar 

  • Mangan, J., Lalwani, C., & Fynes, B. (2008). Port-centric logistics. International Journal of Logistics Management, 19, 29–41.

    Article  Google Scholar 

  • Meng, Q., & Wang, X. (2011). Intermodal hub-and-spoke network design: Incorporating multiple stakeholders and multi-type containers. Transportation Research Part B: Methodological, 45, 724–742.

    Article  Google Scholar 

  • Notteboom, T. (2004). Container shipping and ports: An overview. Review of Network Economics, 3, 86–106.

    Article  Google Scholar 

  • Notteboom, T. (2007). Inland waterway transport of containerized cargo: From infancy to a fully-fledged transport mode. Journal of Maritime Research, 4, 63–80.

    Google Scholar 

  • Notteboom, T., & Rodrigue, J.-P. (2005). Port regionalization: Towards a new phase in port development. Maritime Policy & Management, 32, 297–313.

    Article  Google Scholar 

  • Notteboom, T., & Rodrigue, J.-P. (2009a). The future of containerization: Perspectives from maritime and inland freight distribution. Geo Journal, 74, 7–22.

    Google Scholar 

  • O’Kelly, M. E. (1986a). The location of interacting hub facilities. Transportation Science, 20, 92–106.

    Google Scholar 

  • O’Kelly, M. E. (1986b). Activity levels at hub facilities in interacting networks. Geographical Analysis, 18, 343–356.

    Google Scholar 

  • O’Kelly, M., & Bryan, D. (1998). Hub location with flow economies of scale. Transportation Research Part B: Methodological, 32, 605–616.

    Article  Google Scholar 

  • Parola, F., & Sciomachen, A. (2005). Intermodal container flows in a port system network: Analysis of possible growths via simulation models. International Journal of Production Economics, 97, 75–88.

    Article  Google Scholar 

  • Racunica, I., & Wynter, L. (2005). Optimal location of intermodal freight hubs. Transportation Research Part B: Methodological, 39, 453–477.

    Article  Google Scholar 

  • Ronen, D. (1993). Ship scheduling: The last decade. European Journal of Operational Research, 71, 325–333.

    Article  Google Scholar 

  • Roso, V. (2007). Evaluation of the dry port concept from an environmental perspective: A note. Transportation Research Part D, 17, 523–527.

    Article  Google Scholar 

  • Roso, V., Woxenius, J., & Lumsden, K. (2009). The dry port concept: Connnecting container seaports with the hinterland. Journal of Transport Geography, 17, 338–345.

    Article  Google Scholar 

  • Rutten, B. C. M. (1998). The design of a terminal network for intermodal transport. Transport Logistics, 1, 279–298.

    Article  Google Scholar 

  • Skorin-Kapov, D. (1998). Hub network games. Networks, 31, 293–302.

    Article  Google Scholar 

  • Skorin-Kapov, D., & Skorin-Kapov, J. (2005). Threshold based discounting networks: The cost allocation provided by the nucleolus. European Journal of Operational Research, 166, 154–159.

    Article  Google Scholar 

  • Smilowitz, K. R., & Daganzo, C. F. (2007). Continuum approximation techniques for the design of integrated package distribution systems. Networks, 50, 183–196.

    Article  Google Scholar 

  • Stahlbock, R., & Voss, S. (2008). Operations research at container terminals: A literature update. OR Spectrum, 30, 1–52.

    Article  Google Scholar 

  • SteadieSeifi, M., Dellaert, N. P., Nuijten, W., Van Woensel, T., Raoufi, R. (2014). Multimodal freight transportation planning: A literature review. European Journal of Operational Research, 233(1), 1–15.

    Article  Google Scholar 

  • Toth, P., & Vigo, D. (2001). The Vehicle Routing Problem. Philadelphia: Siam.

    Google Scholar 

  • Van den Berg, R., De Langen, P. W., & Rúa Costa, C. (2012). The role of port authorities in new intermodal service development; The case of Barcelona Port Authority. Research in Transportation Business & Management, 5, 78–84.

    Article  Google Scholar 

  • Van Schijndel, W.-J., & Dinwoodie, J. (2000). Congestion and multimodal transport: A survey of cargo transport operators in the Netherlands. Transport Policy, 7, 231–241.

    Article  Google Scholar 

  • Veenstra, A., Zuidwijk, R., & van Asperen, E. (2012). The extended gate concept for container terminals: Expanding the notion of dry ports. Maritime Economics & Logistics, 14, 14–32.

    Article  Google Scholar 

  • Vis, I. F. A., & De Koster, R. (2003). Transhipment of containers at a container terminal: An overview. European Journal of Operational Research, 147, 1–16.

    Article  Google Scholar 

  • Wardrop, J. G. (1952). Road paper: Some theoretical aspects of road traffic research. ICE Proceedings: Engineering Divisions, 1, 325–362.

    Google Scholar 

  • Yaman, H. (2009). The hierarchical hub median problem with single assignment. Transportation Research Part B: Methodological, 43, 643–658.

    Article  Google Scholar 

  • Zuidwijk, R. A., & Veenstra, A. W. (2014). The value of information in container transport. Transportation Science (in press).

    Google Scholar 

Download references

Acknowledgements

The research was partly financed by Dinalog, the Dutch Institute for Advanced Logistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan C. Fransoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bouchery, Y., Fazi, S., Fransoo, J. (2015). Hinterland Transportation in Container Supply Chains. In: Lee, CY., Meng, Q. (eds) Handbook of Ocean Container Transport Logistics. International Series in Operations Research & Management Science, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-319-11891-8_17

Download citation

Publish with us

Policies and ethics