Skip to main content

Abstract

The Ror family of receptor tyrosine kinases (RTKs) are originally identified as orphan receptor tyrosine kinases whose tyrosine kinase domains are highly similar to those of the Trk family of RTKs. They exhibit evolutionarily conserved structure in invertebrate and vertebrate, including Caenorhabditis elegans, Drosophila melanogaster, Xenopus laevis, Mus musculus, and Homo sapiens. Their expression patterns are restricted in the developing nervous systems in nematodes and fruit flies, and both Ror1 and Ror2, members of the Ror-family RTKs in mammals, are expressed at high levels during early embryogenesis, implying that the Ror-family RTKs play roles in embryonic development. Indeed, recent studies using Ror1- and Ror2-deficient mice have revealed their crucial roles in embryonic morphogenesis and development of various organs and tissues. Furthermore, both Ror1 and Ror2 have been shown to act as a receptor or co-receptor for Wnt5a to mediate noncanonical Wnt signaling that regulates diverse cellular functions and behaviors, including cellular polarity, migration, and invasion. In this chapter, we will provide a current overview of the Ror-family RTKs, with an emphasis on their expression patterns and roles during development, and their functional significance in human diseases, including developmental anomalies, cancer progression, and inflammation. We will also describe the structure–function relationship of the Ror-family RTKs to show their intriguing functional features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A–P:

Anterior–posterior

aPKC:

Atypical protein kinase C

ARNT:

Arylhydrocarbon receptor nuclear translocator

BDA2:

Brachydactyly type A2

BDB:

Brachydactyly type B

BDC:

Brachydactyly type C

BRI:

Bone morphogenetic protein receptor type I

CAM-1:

CAN abnormal migration 1

CaSR:

Calcium-sensing receptor

CE:

Convergent extension

Chip:

Chromatin-immunoprecipitation

CKIε:

Casein kinase Iε

CLL:

Chronic lymphocytic leukemia

CPZ:

Carboxypeptidase Z

CRD:

Cysteine-rich domain

Cthrc1:

Collagen triple-helix repeat-containing protein 1

Ddr:

Discoidin-like domain receptor

DKK:

Dickkopf

DMZ:

Dorsal marginal zone

DRM:

Detergent-resistant microdomains

DRS:

Dominant form of Robinow syndrome

Dvl:

Dishevelled

ECM:

Extracellular matrix

EF:

Electrical field

EMT:

Epithelial–mesenchymal transition

ER:

Endoplasmic reticulum

ERDA:

ER-associated degradation

ERK1/2:

Extracellular signal-regulated kinase 1 and 2

FLNa:

Filamin A

Fzd:

Frizzled

GAS:

γ-interferon activation sequence

GRK2:

G protein-coupled receptor kinase 2

GSK3:

Glycogen synthase kinase 3

HH-stage:

Hamburger and Hamilton stage

HIF:

Hypoxia-inducible factor

TGF-β:

Transforming growth factor-β

Ig:

Immunoglobulin

IHC:

Inner hair cell

JNK:

c-Jun N-terminal kinase

KD:

Kinase-dead

LD:

LIM domain

LEF:

Lymphoid enhancer factor

MAP3K:

MAP kinase kinase kinase

MMP:

Matrix metalloproteinase

MTOC:

Microtubule-organizing center

MuSK:

Muscle-specific receptor tyrosine kinase

NMJ:

Neuromuscular junction

OHC:

Outer hair cell

PAPC:

Paraxial protocadherin

PC:

Prostate carcinoma

PCP:

Planar cell polarity

PGC:

Primordial germ cell

PRD:

Proline-rich domain

PTA:

Persistent truncus arteriosus

RCC:

Renal cell carcinoma

RRS:

Recessive form of Robinow syndrome

RTK:

Receptor tyrosine kinase

S/TRD:

Serine/threonine-rich domain

SCF:

Stem cell factor

SFK:

Src-family kinase

sFRP:

Secreted Fzd-related protein

Smo:

Smoothened

STAT:

Signal transducer and activator of transcription

TAK1:

TGF-β-activated kinase-1

TCF:

T-cell factor

TCL1:

T-cell leukemia 1

TEP:

Transepithelial potential difference

TK:

Tyrosine kinase

Trk:

Tropomyosin-receptor-kinase

UTR:

Untranslated region, Ser/Thr, serine/threonine

Vangl2:

Vang-like 2

VHL:

von Hippel-Lindau

VSD:

Ventricular septal defect

Wnts:

Wnt-family proteins

WT:

Wild-type

WT1:

Wilms tumor protein 1

References

  1. Masiakowski P, Carroll RD. A novel family of cell surface receptors with tyrosine kinase-like domain. J Biol Chem. 1992;267(36):26181–90.

    CAS  PubMed  Google Scholar 

  2. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998;14:59–88.

    CAS  PubMed  Google Scholar 

  3. Hikasa H, Shibata M, Hiratani I, Taira M. The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling. Development. 2002;129(22):5227–39.

    CAS  PubMed  Google Scholar 

  4. Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells. 2003;8(7):645–54.

    CAS  PubMed  Google Scholar 

  5. Forrester WC, Kim C, Garriga G. The Caenorhabditis elegans Ror RTK CAM-1 inhibits EGL-20/Wnt signaling in cell migration. Genetics. 2004;168(4):1951–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Kani S, Oishi I, Yamamoto H, Yoda A, Suzuki H, Nomachi A, et al. The receptor tyrosine kinase Ror2 associates with and is activated by casein kinase Iepsilon. J Biol Chem. 2004;279(48):50102–9.

    CAS  PubMed  Google Scholar 

  7. Billiard J, Way DS, Seestaller-Wehr LM, Moran RA, Mangine A, Bodine PV. The orphan receptor tyrosine kinase Ror2 modulates canonical Wnt signaling in osteoblastic cells. Mol Endocrinol. 2005;19(1):90–101.

    CAS  PubMed  Google Scholar 

  8. Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 2006;4(4):e115.

    PubMed Central  PubMed  Google Scholar 

  9. Green JL, Inoue T, Sternberg PW. The C. elegans ROR receptor tyrosine kinase, CAM-1, non-autonomously inhibits the Wnt pathway. Development. 2007;134(22):4053–62.

    CAS  PubMed  Google Scholar 

  10. Nishita M, Itsukushima S, Nomachi A, Endo M, Wang Z, Inaba D, et al. Ror2/Frizzled complex mediates Wnt5a-induced AP-1 activation by regulating dishevelled polymerization. Mol Cell Biol. 2010;30(14):3610–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Fukuda T, Chen L, Endo T, Tang L, Lu D, Castro JE, et al. Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc Natl Acad Sci USA. 2008;105(8):3047–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Paganoni S, Bernstein J, Ferreira A. Ror1-Ror2 complexes modulate synapse formation in hippocampal neurons. Neuroscience. 2010;165(4):1261–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, et al. Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev. 2010;24(22):2517–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Sato A, Yamamoto H, Sakane H, Koyama H, Kikuchi A. Wnt5a regulates distinct signalling pathways by binding to Frizzled2. EMBO J. 2010;29(1):41–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Endo M, Doi R, Nishita M, Minami Y. Ror family receptor tyrosine kinases regulate the maintenance of neural progenitor cells in the developing neocortex. J Cell Sci. 2012;125(Pt 8):2017. -29.

    CAS  PubMed  Google Scholar 

  16. Kikuchi A, Yamamoto H. Tumor formation due to abnormalities in the beta-catenin-independent pathway of Wnt signaling. Cancer Sci. 2008;99(2):202–8.

    CAS  PubMed  Google Scholar 

  17. Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 2003;5(3):367–77.

    CAS  PubMed  Google Scholar 

  18. Kohn AD, Moon RT. Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium. 2005;38(3–4):439–46.

    CAS  PubMed  Google Scholar 

  19. Seifert JR, Mlodzik M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet. 2007;8(2):126–38.

    CAS  PubMed  Google Scholar 

  20. Minami Y, Oishi I, Endo M, Nishita M. Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: their implications in developmental morphogenesis and human diseases. Dev Dyn. 2010;239(1):1–15.

    CAS  PubMed  Google Scholar 

  21. Yamaguchi TP, Bradley A, McMahon AP, Jones S. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development. 1999;126(6):1211–23.

    CAS  PubMed  Google Scholar 

  22. Nishita M, Yoo SK, Nomachi A, Kani S, Sougawa N, Ohta Y, et al. Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J Cell Biol. 2006;175(4):555–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Nomachi A, Nishita M, Inaba D, Enomoto M, Hamasaki M, Minami Y. Receptor tyrosine kinase Ror2 mediates Wnt5a-induced polarized cell migration by activating c-Jun N-terminal kinase via actin-binding protein filamin A. J Biol Chem. 2008;283(41):27973–81.

    CAS  PubMed  Google Scholar 

  24. Witze ES, Litman ES, Argast GM, Moon RT, Ahn NG. Wnt5a control of cell polarity and directional movement by polarized redistribution of adhesion receptors. Science. 2008;320(5874):365–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Laird DJ, Altshuler-Keylin S, Kissner MD, Zhou X, Anderson KV. Ror2 enhances polarity and directional migration of primordial germ cells. PLoS Genet. 2011;7(12):e1002428.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. He F, Xiong W, Yu X, Espinoza-Lewis R, Liu C, Gu S, et al. Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development. Development. 2008;135(23):3871–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Li C, Chen H, Hu L, Xing Y, Sasaki T, Villosis MF, et al. Ror2 modulates the canonical Wnt signaling in lung epithelial cells through cooperation with Fzd2. BMC Mol Biol. 2008;9:11.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Mikels A, Minami Y, Nusse R. Ror2 receptor requires tyrosine kinase activity to mediate Wnt5A signaling. J Biol Chem. 2009;284(44):30167–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Enomoto M, Hayakawa S, Itsukushima S, Ren DY, Matsuo M, Tamada K, et al. Autonomous regulation of osteosarcoma cell invasiveness by Wnt5a/Ror2 signaling. Oncogene. 2009;28(36):3197–208.

    CAS  PubMed  Google Scholar 

  30. Oldridge M, Fortuna AM, Maringa M, Propping P, Mansour S, Pollitt C, et al. Dominant mutations in ROR2, encoding an orphan receptor tyrosine kinase, cause brachydactyly type B. Nat Genet. 2000;24(3):275–8.

    CAS  PubMed  Google Scholar 

  31. Afzal AR, Rajab A, Fenske CD, Oldridge M, Elanko N, Ternes-Pereira E, et al. Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat Genet. 2000;25(4):419–22.

    CAS  PubMed  Google Scholar 

  32. van Bokhoven H, Celli J, Kayserili H, van Beusekom E, Balci S, Brussel W, et al. Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nat Genet. 2000;25(4):423–6.

    PubMed  Google Scholar 

  33. Schwabe GC, Tinschert S, Buschow C, Meinecke P, Wolff G, Gillessen-Kaesbach G, et al. Distinct mutations in the receptor tyrosine kinase gene ROR2 cause brachydactyly type B. Am J Hum Genet. 2000;67(4):822–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Yamamoto H, Oue N, Sato A, Hasegawa Y, Yamamoto H, Matsubara A, et al. Wnt5a signaling is involved in the aggressiveness of prostate cancer and expression of metalloproteinase. Oncogene. 2010;29(14):2036–46.

    CAS  PubMed  Google Scholar 

  35. Dissanayake SK, Wade M, Johnson CE, O'Connell MP, Leotlela PD, French AD, et al. The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem. 2007;282(23):17259–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Wright TM, Brannon AR, Gordan JD, Mikels AJ, Mitchell C, Chen S, et al. Ror2, a developmentally regulated kinase, promotes tumor growth potential in renal cell carcinoma. Oncogene. 2009;28(27):2513–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Baskar S, Kwong KY, Hofer T, Levy JM, Kennedy MG, Lee E, et al. Unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia. Clin Cancer Res. 2008;14(2):396–404.

    CAS  PubMed  Google Scholar 

  38. Daneshmanesh AH, Mikaelsson E, Jeddi-Tehrani M, Bayat AA, Ghods R, Ostadkarampour M, et al. Ror1, a cell surface receptor tyrosine kinase is expressed in chronic lymphocytic leukemia and may serve as a putative target for therapy. Int J Cancer. 2008;123(5):1190–5.

    CAS  PubMed  Google Scholar 

  39. Forrester WC, Dell M, Perens E, Garriga GA. C elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division. Nature. 1999;400(6747):881–5.

    CAS  PubMed  Google Scholar 

  40. Koga M, Take-uchi M, Tameishi T, Ohshima Y. Control of DAF-7 TGF-(alpha) expression and neuronal process development by a receptor tyrosine kinase KIN-8 in Caenorhabditis elegans. Development. 1999;126(23):5387–98.

    CAS  PubMed  Google Scholar 

  41. Francis MM, Evans SP, Jensen M, Madsen DM, Mancuso J, Norman KR, et al. The Ror receptor tyrosine kinase CAM-1 is required for ACR-16-mediated synaptic transmission at the C. elegans neuromuscular junction. Neuron. 2005;46(4):581–94.

    CAS  PubMed  Google Scholar 

  42. McKay SE, Hislop J, Scott D, Bulloch AG, Kaczmarek LK, Carew TJ, et al. Aplysia ror forms clusters on the surface of identified neuroendocrine cells. Mol Cell Neurosci. 2001;17(5):821–41.

    CAS  PubMed  Google Scholar 

  43. Wilson C, Goberdhan DC, Steller H. Dror, a potential neurotrophic receptor gene, encodes a Drosophila homolog of the vertebrate Ror family of Trk-related receptor tyrosine kinases. Proc Natl Acad Sci USA. 1993;90(15):7109–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Oishi I, Sugiyama S, Liu ZJ, Yamamura H, Nishida Y, Minami Y. A novel Drosophila receptor tyrosine kinase expressed specifically in the nervous system. Unique structural features and implication in developmental signaling. J Biol Chem. 1997;272(18):11916–23.

    CAS  PubMed  Google Scholar 

  45. Rodriguez-Niedenfuhr M, Prols F, Christ B. Expression and regulation of ROR-1 during early avian limb development. Anat Embryol. 2004;207(6):495–502.

    PubMed  Google Scholar 

  46. Stricker S, Verhey van Wijk N, Witte F, Brieske N, Seidel K, Mundlos S. Cloning and expression pattern of chicken Ror2 and functional characterization of truncating mutations in Brachydactyly type B and Robinow syndrome. Dev Dyn. 2006;235(12):3456–65.

    CAS  PubMed  Google Scholar 

  47. Al-Shawi R, Ashton SV, Underwood C, Simons JP. Expression of the Ror1 and Ror2 receptor tyrosine kinase genes during mouse development. Dev Genes Evol. 2001;211(4):161–71.

    CAS  PubMed  Google Scholar 

  48. Matsuda T, Nomi M, Ikeya M, Kani S, Oishi I, Terashima T, et al. Expression of the receptor tyrosine kinase genes, Ror1 and Ror2, during mouse development. Mech Dev. 2001;105(1–2):153–6.

    CAS  PubMed  Google Scholar 

  49. Oishi I, Takeuchi S, Hashimoto R, Nagabukuro A, Ueda T, Liu ZJ, et al. Spatio-temporally regulated expression of receptor tyrosine kinases, mRor1, mRor2, during mouse development: implications in development and function of the nervous system. Genes Cells. 1999;4(1):41–56.

    CAS  PubMed  Google Scholar 

  50. Paganoni S, Anderson KL, Ferreira A. Differential subcellular localization of Ror tyrosine kinase receptors in cultured astrocytes. Glia. 2004;46(4):456–66.

    PubMed  Google Scholar 

  51. Paganoni S, Ferreira A. Expression and subcellular localization of Ror tyrosine kinase receptors are developmentally regulated in cultured hippocampal neurons. J Neurosci Res. 2003;73(4):429–40.

    CAS  PubMed  Google Scholar 

  52. Paganoni S, Ferreira A. Neurite extension in central neurons: a novel role for the receptor tyrosine kinases Ror1 and Ror2. J Cell Sci. 2005;118(Pt 2):433–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Yamamoto S, Nishimura O, Misaki K, Nishita M, Minami Y, Yonemura S, et al. Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev Cell. 2008;15(1):23–36.

    CAS  PubMed  Google Scholar 

  54. Yamada M, Udagawa J, Matsumoto A, Hashimoto R, Hatta T, Nishita M, et al. Ror2 is required for midgut elongation during mouse development. Dev Dyn. 2010;239(3):941–53.

    CAS  PubMed  Google Scholar 

  55. Schwabe GC, Trepczik B, Suring K, Brieske N, Tucker AS, Sharpe PT, et al. Ror2 knockout mouse as a model for the developmental pathology of autosomal recessive Robinow syndrome. Dev Dyn. 2004;229(2):400–10.

    CAS  PubMed  Google Scholar 

  56. Lin M, Li L, Liu C, Liu H, He F, Yan F, et al. Wnt5a regulates growth, patterning, and odontoblast differentiation of developing mouse tooth. Dev Dyn. 2011;240(2):432–40.

    PubMed Central  PubMed  Google Scholar 

  57. Forrester WC, Garriga G. Genes necessary for C elegans cell and growth cone migrations. Development. 1997;124(9):1831–43.

    CAS  PubMed  Google Scholar 

  58. Song S, Zhang B, Sun H, Li X, Xiang Y, Liu Z, et al. A Wnt-Frz/Ror-Dsh pathway regulates neurite outgrowth in Caenorhabditis elegans. PLoS Genet. 2010;6(8):e1001056.

    PubMed Central  PubMed  Google Scholar 

  59. Green JL, Inoue T, Sternberg PW. Opposing Wnt pathways orient cell polarity during organogenesis. Cell. 2008;134(4):646–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Kennerdell JR, Fetter RD, Bargmann CI. Wnt-Ror signaling to SIA and SIB neurons directs anterior axon guidance and nerve ring placement in C elegans. Development. 2009;136(22):3801–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Babu K, Hu Z, Chien SC, Garriga G, Kaplan JM. The immunoglobulin super family protein RIG-3 prevents synaptic potentiation and regulates Wnt signaling. Neuron. 2011;71(1):103–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Hayashi Y, Hirotsu T, Iwata R, Kage-Nakadai E, Kunitomo H, Ishihara T, et al. A trophic role for Wnt-Ror kinase signaling during developmental pruning in Caenorhabditis elegans. Nat Neurosci. 2009;12(8):981–7.

    CAS  PubMed  Google Scholar 

  63. Moon RT, Campbell RM, Christian JL, McGrew LL, Shih J, Fraser S. Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development. 1993;119(1):97–111.

    CAS  PubMed  Google Scholar 

  64. Yamanaka H, Moriguchi T, Masuyama N, Kusakabe M, Hanafusa H, Takada R, et al. JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMBO Rep. 2002;3(1):69–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Schambony A, Wedlich D. Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev Cell. 2007;12(5):779–92.

    CAS  PubMed  Google Scholar 

  66. Ossipova O, Sokol SY. Neural crest specification by noncanonical Wnt signaling and PAR-1. Development. 2011;138(24):5441–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. DeChiara TM, Kimble RB, Poueymirou WT, Rojas J, Masiakowski P, Valenzuela DM, et al. Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nat Genet. 2000;24(3):271–4.

    CAS  PubMed  Google Scholar 

  68. Takeuchi S, Takeda K, Oishi I, Nomi M, Ikeya M, Itoh K, et al. Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells. 2000;5(1):71–8.

    CAS  PubMed  Google Scholar 

  69. Nomi M, Oishi I, Kani S, Suzuki H, Matsuda T, Yoda A, et al. Loss of mRor1 enhances the heart and skeletal abnormalities in mRor2-deficient mice: redundant and pleiotropic functions of mRor1 and mRor2 receptor tyrosine kinases. Mol Cell Biol. 2001;21(24):8329–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Okamoto M, Udagawa N, Uehara S, Maeda K, Yamashita T, Nakamichi Y, et al. Noncanonical Wnt5a enhances Wnt/beta-catenin signaling during osteoblastogenesis. Sci Rep. 2014;4:4493.

    PubMed Central  PubMed  Google Scholar 

  71. Maeda K, Kobayashi Y, Udagawa N, Uehara S, Ishihara A, Mizoguchi T, et al. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat Med. 2012;18(3):405–12.

    CAS  PubMed  Google Scholar 

  72. Li C, Xiao J, Hormi K, Borok Z, Minoo P. Wnt5a participates in distal lung morphogenesis. Dev Biol. 2002;248(1):68–81.

    CAS  PubMed  Google Scholar 

  73. Nishita M, Qiao S, Miyamoto M, Okinaka Y, Yamada M, Hashimoto R, et al. Role of Wnt5a-Ror2 signaling in morphogenesis of the metanephric mesenchyme during ureteric budding. Mol Cell Biol. 2014;34(16):3096–105.

    PubMed Central  PubMed  Google Scholar 

  74. Yun K, Ajima R, Sharma N, Costantini F, Mackem S, Lewandoski M, et al. Non-canonical Wnt5a/Ror2 signaling regulates kidney morphogenesis by controlling intermediate mesoderm extension. Hum Mol Genet. 2014;23:6807–14.

    CAS  PubMed  Google Scholar 

  75. Lyashenko N, Weissenbock M, Sharir A, Erben RG, Minami Y, Hartmann C. Mice lacking the orphan receptor ror1 have distinct skeletal abnormalities and are growth retarded. Dev Dyn. 2010;239(8):2266–77.

    CAS  PubMed  Google Scholar 

  76. Suzuki K, Bachiller D, Chen YP, Kamikawa M, Ogi H, Haraguchi R, et al. Regulation of outgrowth and apoptosis for the terminal appendage: external genitalia development by concerted actions of BMP signaling [corrected]. Development. 2003;130(25):6209–20.

    CAS  PubMed  Google Scholar 

  77. Chen P, Johnson JE, Zoghbi HY, Segil N. The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development. 2002;129(10):2495–505.

    CAS  PubMed  Google Scholar 

  78. Ho HY, Susman MW, Bikoff JB, Ryu YK, Jonas AM, Hu L, et al. Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc Natl Acad Sci USA. 2012;109(11):4044–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Cha J, Bartos A, Park C, Sun X, Li Y, Cha SW, et al. Appropriate crypt formation in the uterus for embryo homing and implantation requires Wnt5a-ROR signaling. Cell Rep. 2014;8(2):382–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Afzal AR, Jeffery S. One gene, two phenotypes: ROR2 mutations in autosomal recessive Robinow syndrome and autosomal dominant brachydactyly type B. Hum Mutat. 2003;22(1):1–11.

    CAS  PubMed  Google Scholar 

  81. Raz R, Stricker S, Gazzerro E, Clor JL, Witte F, Nistala H, et al. The mutation ROR2W749X, linked to human BDB, is a recessive mutation in the mouse, causing brachydactyly, mediating patterning of joints and modeling recessive Robinow syndrome. Development. 2008;135(9):1713–23.

    CAS  PubMed  Google Scholar 

  82. Patton MA, Afzal AR. Robinow syndrome. J Med Genet. 2002;39(5):305–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Ali BR, Jeffery S, Patel N, Tinworth LE, Meguid N, Patton MA, et al. Novel Robinow syndrome causing mutations in the proximal region of the frizzled-like domain of ROR2 are retained in the endoplasmic reticulum. Hum Genet. 2007;122(3–4):389–95.

    CAS  PubMed  Google Scholar 

  84. Tufan F, Cefle K, Turkmen S, Turkmen A, Zorba U, Dursun M, et al. Clinical and molecular characterization of two adults with autosomal recessive Robinow syndrome. Am J Med Genet A. 2005;136(2):185–9.

    PubMed  Google Scholar 

  85. Chen Y, Bellamy WP, Seabra MC, Field MC, Ali BR. ER-associated protein degradation is a common mechanism underpinning numerous monogenic diseases including Robinow syndrome. Hum Mol Genet. 2005;14(17):2559–69.

    CAS  PubMed  Google Scholar 

  86. Brunetti-Pierri N, Del Gaudio D, Peters H, Justino H, Ott CE, Mundlos S, et al. Robinow syndrome: phenotypic variability in a family with a novel intragenic ROR2 mutation. Am J Med Genet A. 2008;146A(21):2804–9.

    CAS  PubMed  Google Scholar 

  87. Person AD, Beiraghi S, Sieben CM, Hermanson S, Neumann AN, Robu ME, et al. WNT5A mutations in patients with autosomal dominant Robinow syndrome. Dev Dyn. 2010;239(1):327–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Morioka K, Tanikawa C, Ochi K, Daigo Y, Katagiri T, Kawano H, et al. Orphan receptor tyrosine kinase ROR2 as a potential therapeutic target for osteosarcoma. Cancer Sci. 2009;100(7):1227–33.

    CAS  PubMed  Google Scholar 

  89. Weaver AM. Invadopodia: specialized cell structures for cancer invasion. Clin Exp Metastasis. 2006;23(2):97–105.

    PubMed  Google Scholar 

  90. Yamagata K, Li X, Ikegaki S, Oneyama C, Okada M, Nishita M, et al. Dissection of Wnt5a-Ror2 signaling leading to matrix metalloproteinase (MMP-13) expression. J Biol Chem. 2012;287(2):1588–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Slaton JW, Inoue K, Perrotte P, El-Naggar AK, Swanson DA, Fidler IJ, et al. Expression levels of genes that regulate metastasis and angiogenesis correlate with advanced pathological stage of renal cell carcinoma. Am J Pathol. 2001;158(2):735–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell. 2002;1(3):279–88.

    CAS  PubMed  Google Scholar 

  93. O’Connell MP, Fiori JL, Xu M, Carter AD, Frank BP, Camilli TC, et al. The orphan tyrosine kinase receptor, ROR2, mediates Wnt5A signaling in metastatic melanoma. Oncogene. 2010;29(1):34–44.

    PubMed Central  PubMed  Google Scholar 

  94. O’Connell MP, Fiori JL, Baugher KM, Indig FE, French AD, Camilli TC, et al. Wnt5A activates the calpain-mediated cleavage of filamin A. J Invest Dermatol. 2009;129(7):1782–9.

    PubMed Central  PubMed  Google Scholar 

  95. O’Connell MP, Marchbank K, Webster MR, Valiga AA, Kaur A, Vultur A, et al. Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov. 2013;3:1378–93.

    PubMed Central  PubMed  Google Scholar 

  96. Jenei V, Sherwood V, Howlin J, Linnskog R, Safholm A, Axelsson L, et al. A t-butyloxycarbonyl-modified Wnt5a-derived hexapeptide functions as a potent antagonist of Wnt5a-dependent melanoma cell invasion. Proc Natl Acad Sci USA. 2009;106(46):19473–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Pacheco II, Macleod RJ. CaSR stimulates secretion of Wnt5a from colonic myofibroblasts to stimulate CDX2 and sucrase-isomaltase using Ror2 on intestinal epithelia. Am J Physiol Gastrointest Liver Physiol. 2008;295(4):G748–59.

    CAS  PubMed  Google Scholar 

  98. Aoki K, Tamai Y, Horiike S, Oshima M, Taketo MM. Colonic polyposis caused by mTOR-mediated chromosomal instability in Apc+/Delta716 Cdx2+/- compound mutant mice. Nat Genet. 2003;35(4):323–30.

    CAS  PubMed  Google Scholar 

  99. Bonhomme C, Duluc I, Martin E, Chawengsaksophak K, Chenard MP, Kedinger M, et al. The Cdx2 homeobox gene has a tumour suppressor function in the distal colon in addition to a homeotic role during gut development. Gut. 2003;52(10):1465–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Lara E, Calvanese V, Huidobro C, Fernandez AF, Moncada-Pazos A, Obaya AJ, et al. Epigenetic repression of ROR2 has a Wnt-mediated, pro-tumourigenic role in colon cancer. Mol Cancer. 2010;9:170.

    PubMed Central  PubMed  Google Scholar 

  101. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.

    CAS  PubMed  Google Scholar 

  102. Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172(7):973–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2(2):84–9.

    CAS  PubMed  Google Scholar 

  104. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2(2):76–83.

    CAS  PubMed  Google Scholar 

  105. Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005;132(14):3151–61.

    CAS  PubMed  Google Scholar 

  106. Ren D, Minami Y, Nishita M. Critical role of Wnt5a-Ror2 signaling in motility and invasiveness of carcinoma cells following Snail-mediated epithelial-mesenchymal transition. Genes Cells. 2011;16(3):304–15.

    CAS  PubMed  Google Scholar 

  107. Shabani M, Asgarian-Omran H, Jeddi-Tehrani M, Vossough P, Faranoush M, Sharifian RA, et al. Overexpression of orphan receptor tyrosine kinase Ror1 as a putative tumor-associated antigen in Iranian patients with acute lymphoblastic leukemia. Tumour Biol. 2007;28(6):318–26.

    CAS  PubMed  Google Scholar 

  108. Shabani M, Asgarian-Omran H, Vossough P, Sharifian RA, Faranoush M, Ghragozlou S, et al. Expression profile of orphan receptor tyrosine kinase (ROR1) and Wilms’ tumor gene 1 (WT1) in different subsets of B-cell acute lymphoblastic leukemia. Leuk Lymphoma. 2008;49(7):1360–7.

    CAS  PubMed  Google Scholar 

  109. Widhopf 2nd GF, Cui B, Ghia EM, Chen L, Messer K, Shen Z, et al. ROR1 can interact with TCL1 and enhance leukemogenesis in Emu-TCL1 transgenic mice. Proc Natl Acad Sci USA. 2014;111(2):793–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Zhang H, Qiu J, Ye C, Yang D, Gao L, Su Y, et al. ROR1 expression correlated with poor clinical outcome in human ovarian cancer. Sci Rep. 2014;4:5811.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. MacKeigan JP, Murphy LO, Blenis J. Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol. 2005;7(6):591–600.

    CAS  PubMed  Google Scholar 

  112. Gentile A, Lazzari L, Benvenuti S, Trusolino L, Comoglio PM. Ror1 is a pseudokinase that is crucial for Met-driven tumorigenesis. Cancer Res. 2011;71(8):3132–41.

    CAS  PubMed  Google Scholar 

  113. Klemm F, Bleckmann A, Siam L, Chuang HN, Rietkotter E, Behme D, et al. Beta-catenin-independent WNT signaling in basal-like breast cancer and brain metastasis. Carcinogenesis. 2011;32(3):434–42.

    CAS  PubMed  Google Scholar 

  114. Hojjat-Farsangi M, Ghaemimanesh F, Daneshmanesh AH, Bayat AA, Mahmoudian J, Jeddi-Tehrani M, et al. Inhibition of the receptor tyrosine kinase ROR1 by anti-ROR1 monoclonal antibodies and siRNA induced apoptosis of melanoma cells. PLoS One. 2013;8(4):e61167.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Yamaguchi T, Yanagisawa K, Sugiyama R, Hosono Y, Shimada Y, Arima C, et al. NKX2-1/TITF1/TTF-1-Induced ROR1 is required to sustain EGFR survival signaling in lung adenocarcinoma. Cancer Cell. 2012;21(3):348–61.

    CAS  PubMed  Google Scholar 

  116. Zhang S, Chen L, Cui B, Chuang HY, Yu J, Wang-Rodriguez J, et al. ROR1 is expressed in human breast cancer and associated with enhanced tumor-cell growth. PLoS One. 2012;7(3):e31127.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Cui B, Zhang S, Chen L, Yu J, Widhopf 2nd GF, Fecteau JF, et al. Targeting ROR1 inhibits epithelial-mesenchymal transition and metastasis. Cancer Res. 2013;73(12):3649–60.

    CAS  PubMed  Google Scholar 

  118. Miyoshi H, Ajima R, Luo CT, Yamaguchi TP, Stappenbeck TS. Wnt5a potentiates TGF-beta signaling to promote colonic crypt regeneration after tissue injury. Science. 2012;338(6103):108–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Li X, Yamagata K, Nishita M, Endo M, Arfian N, Rikitake Y, et al. Activation of Wnt5a-Ror2 signaling associated with epithelial-to-mesenchymal transition of tubular epithelial cells during renal fibrosis. Genes Cells. 2013;18(7):608–19.

    CAS  PubMed  Google Scholar 

  120. Sonomoto K, Yamaoka K, Oshita K, Fukuyo S, Zhang X, Nakano K, et al. Interleukin-1beta induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinase-like orphan receptor 2 pathway. Arthritis Rheum. 2012;64(10):3355–63.

    CAS  PubMed  Google Scholar 

  121. Smith EN, Bloss CS, Badner JA, Barrett T, Belmonte PL, Berrettini W, et al. Genome-wide association study of bipolar disorder in European American and African American individuals. Mol Psychiatry. 2009;14(8):755–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Ban HJ, Kim SC, Seo J, Kang HB, Choi JK. Genetic and metabolic characterization of insomnia. PLoS One. 2011;6(4):e18455.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Butler MG, Wadlington WB. Robinow syndrome: report of two patients and review of literature. Clin Genet. 1987;31(2):77–85.

    CAS  PubMed  Google Scholar 

  124. Nowakowska B, Kutkowska-Kazmierczak A, Stankiewicz P, Bocian E, Obersztyn E, Ou Z, et al. A girl with deletion 9q22.1–q22.32 including the PTCH and ROR2 genes identified by genome-wide array-CGH. Am J Med Genet A. 2007;143A(16):1885–9.

    PubMed  Google Scholar 

  125. Masiakowski P, Yancopoulos GD. The Wnt receptor CRD domain is also found in MuSK and related orphan receptor tyrosine kinases. Curr Biol. 1998;8(12):R407.

    CAS  PubMed  Google Scholar 

  126. Rehn M, Pihlajaniemi T, Hofmann K, Bucher P. The frizzled motif: in how many different protein families does it occur? Trends Biochem Sci. 1998;23(11):415–7.

    CAS  PubMed  Google Scholar 

  127. Saldanha J, Singh J, Mahadevan D. Identification of a Frizzled-like cysteine rich domain in the extracellular region of developmental receptor tyrosine kinases. Protein Sci. 1998;7(8):1632–5.

    CAS  Google Scholar 

  128. Xu YK, Nusse R. The frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr Biol. 1998;8(12):R405–6.

    CAS  PubMed  Google Scholar 

  129. Patthy L. Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules. Cell. 1985;41(3):657–63.

    CAS  PubMed  Google Scholar 

  130. McLean JW, Tomlinson JE, Kuang WJ, Eaton DL, Chen EY, Fless GM, et al. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature. 1987;330(6144):132–7.

    CAS  PubMed  Google Scholar 

  131. Furie B, Furie BC. The molecular basis of blood coagulation. Cell. 1988;53(4):505–18.

    CAS  PubMed  Google Scholar 

  132. Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, et al. Molecular cloning and expression of human hepatocyte growth factor. Nature. 1989;342(6248):440–3.

    CAS  PubMed  Google Scholar 

  133. Nakamura T, Aoki S, Kitajima K, Takahashi T, Matsumoto K. Molecular cloning and characterization of Kremen, a novel kringle-containing transmembrane protein. Biochim Biophys Acta. 2001;1518(1–2):63–72.

    CAS  PubMed  Google Scholar 

  134. Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, et al. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature. 2002;417(6889):664–7.

    CAS  PubMed  Google Scholar 

  135. Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene. 2000;19(49):5548–57.

    CAS  PubMed  Google Scholar 

  136. Sossin WS. Tracing the evolution and function of the Trk superfamily of receptor tyrosine kinases. Brain Behav Evol. 2006;68(3):145–56.

    PubMed  Google Scholar 

  137. Green JL, Kuntz SG, Sternberg PW. Ror receptor tyrosine kinases: orphans no more. Trends Cell Biol. 2008;18(11):536–44.

    CAS  PubMed  Google Scholar 

  138. Liu Y, Ross JF, Bodine PV, Billiard J. Homodimerization of Ror2 tyrosine kinase receptor induces 14-3-3(beta) phosphorylation and promotes osteoblast differentiation and bone formation. Mol Endocrinol. 2007;21(12):3050–61.

    CAS  PubMed  Google Scholar 

  139. Akbarzadeh S, Wheldon LM, Sweet SM, Talma S, Mardakheh FK, Heath JK. The deleted in brachydactyly B domain of ROR2 is required for receptor activation by recruitment of Src. PLoS One. 2008;3(3):e1873.

    PubMed Central  PubMed  Google Scholar 

  140. Liu Y, Rubin B, Bodine PV, Billiard J. Wnt5a induces homodimerization and activation of Ror2 receptor tyrosine kinase. J Cell Biochem. 2008;105(2):497–502.

    CAS  PubMed  Google Scholar 

  141. Yoda A, Oishi I, Minami Y. Expression and function of the Ror-family receptor tyrosine kinases during development: lessons from genetic analyses of nematodes, mice, and humans. J Recept Signal Transduct Res. 2003;23(1):1–15.

    CAS  PubMed  Google Scholar 

  142. Li P, Harris D, Liu Z, Liu J, Keating M, Estrov Z. Stat3 activates the receptor tyrosine kinase like orphan receptor-1 gene in chronic lymphocytic leukemia cells. PLoS One. 2010;5(7):e11859.

    PubMed Central  PubMed  Google Scholar 

  143. Kaucka M, Krejci P, Plevova K, Pavlova S, Prochazkova J, Janovska P, et al. Post-translational modifications regulate signalling by Ror1. Acta Physiol (Oxf). 2011;203(3):351–62.

    CAS  Google Scholar 

  144. Hojjat-Farsangi M, Khan AS, Daneshmanesh AH, Moshfegh A, Sandin A, Mansouri L, et al. The tyrosine kinase receptor ROR1 is constitutively phosphorylated in chronic lymphocytic leukemia (CLL) cells. PLoS One. 2013;8(10):e78339.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Gentile A, Lazzari L, Benvenuti S, Trusolino L, Comoglio PM. The ROR1 pseudokinase diversifies signaling outputs in MET-addicted cancer cells. Int J Cancer. 2014;135(10):2305–16.

    CAS  PubMed  Google Scholar 

  146. Sanchez-Solana B, Laborda J, Baladron V. Mouse resistin modulates adipogenesis and glucose uptake in 3T3-L1 preadipocytes through the ROR1 receptor. Mol Endocrinol. 2012;26(1):110–27.

    CAS  PubMed  Google Scholar 

  147. Lai AZ, Abella JV, Park M. Crosstalk in Met receptor oncogenesis. Trends Cell Biol. 2009;19(10):542–51.

    CAS  PubMed  Google Scholar 

  148. Wright TM, Rathmell WK. Identification of Ror2 as a hypoxia-inducible factor target in von Hippel-Lindau-associated renal cell carcinoma. J Biol Chem. 2010;285(17):12916–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Shen C, Nettleton D, Jiang M, Kim SK, Powell-Coffman JA. Roles of the HIF-1 hypoxia-inducible factor during hypoxia response in Caenorhabditis elegans. J Biol Chem. 2005;280(21):20580–8.

    CAS  PubMed  Google Scholar 

  150. Yamamoto H, Yoo SK, Nishita M, Kikuchi A, Minami Y. Wnt5a modulates glycogen synthase kinase 3 to induce phosphorylation of receptor tyrosine kinase Ror2. Genes Cells. 2007;12(11):1215–23.

    CAS  PubMed  Google Scholar 

  151. Medzihradszky KF, Darula Z, Perlson E, Fainzilber M, Chalkley RJ, Ball H, et al. O-sulfonation of serine and threonine: mass spectrometric detection and characterization of a new posttranslational modification in diverse proteins throughout the eukaryotes. Mol Cell Proteomics. 2004;3(5):429–40.

    CAS  PubMed  Google Scholar 

  152. Clark CC, Cohen I, Eichstetter I, Cannizzaro LA, McPherson JD, Wasmuth JJ, et al. Molecular cloning of the human proto-oncogene Wnt-5A and mapping of the gene (WNT5A) to chromosome 3p14-p21. Genomics. 1993;18(2):249–60.

    CAS  PubMed  Google Scholar 

  153. Kurayoshi M, Yamamoto H, Izumi S, Kikuchi A. Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem J. 2007;402(3):515–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Zhang X, Zhu J, Yang GY, Wang QJ, Qian L, Chen YM, et al. Dishevelled promotes axon differentiation by regulating atypical protein kinase C. Nat Cell Biol. 2007;9(7):743–54.

    CAS  PubMed  Google Scholar 

  155. Schlessinger K, McManus EJ, Hall A. Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J Cell Biol. 2007;178(3):355–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Cheung R, Kelly J, Macleod RJ. Regulation of villin by wnt5a/ror2 signaling in human intestinal cells. Front Physiol. 2011;2:58.

    PubMed Central  PubMed  Google Scholar 

  157. Cao L, McCaig CD, Scott RH, Zhao S, Milne G, Clevers H, et al. Polarizing intestinal epithelial cells electrically through Ror2. J Cell Sci. 2014;127(Pt 15):3233–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Takai A, Inomata H, Arakawa A, Yakura R, Matsuo-Takasaki M, Sasai Y. Anterior neural development requires Del1, a matrix-associated protein that attenuates canonical Wnt signaling via the Ror2 pathway. Development. 2010;137(19):3293–302.

    CAS  PubMed  Google Scholar 

  159. Winkel A, Stricker S, Tylzanowski P, Seiffart V, Mundlos S, Gross G, et al. Wnt-ligand-dependent interaction of TAK1 (TGF-beta-activated kinase-1) with the receptor tyrosine kinase Ror2 modulates canonical Wnt-signalling. Cell Signal. 2008;20(11):2134–44.

    CAS  PubMed  Google Scholar 

  160. Feike AC, Rachor K, Gentzel M, Schambony A. Wnt5a/Ror2-induced upregulation of xPAPC requires xShcA. Biochem Biophys Res Commun. 2010;400(4):500–6.

    CAS  PubMed  Google Scholar 

  161. Matsuda T, Suzuki H, Oishi I, Kani S, Kuroda Y, Komori T, et al. The receptor tyrosine kinase Ror2 associates with the melanoma-associated antigen (MAGE) family protein Dlxin-1 and regulates its intracellular distribution. J Biol Chem. 2003;278(31):29057–64.

    CAS  PubMed  Google Scholar 

  162. Witte F, Bernatik O, Kirchner K, Masek J, Mahl A, Krejci P, et al. Negative regulation of Wnt signaling mediated by CK1-phosphorylated dishevelled via Ror2. FASEB J. 2010;24(7):2417–26.

    CAS  PubMed  Google Scholar 

  163. Qian D, Jones C, Rzadzinska A, Mark S, Zhang X, Steel KP, et al. Wnt5a functions in planar cell polarity regulation in mice. Dev Biol. 2007;306:121–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Gao B, Song H, Bishop K, Elliot G, Garrett L, English MA, et al. Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell. 2011;20(2):163–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. van Wijk NV, Witte F, Feike AC, Schambony A, Birchmeier W, Mundlos S, et al. The LIM domain protein Wtip interacts with the receptor tyrosine kinase Ror2 and inhibits canonical Wnt signalling. Biochem Biophys Res Commun. 2009;390(2):211–6.

    PubMed  Google Scholar 

  166. Sammar M, Stricker S, Schwabe GC, Sieber C, Hartung A, Hanke M, et al. Modulation of GDF5/BRI-b signalling through interaction with the tyrosine kinase receptor Ror2. Genes Cells. 2004;9(12):1227–38.

    CAS  PubMed  Google Scholar 

  167. Nishitoh H, Ichijo H, Kimura M, Matsumoto T, Makishima F, Yamaguchi A, et al. Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5. J Biol Chem. 1996;271(35):21345–52.

    CAS  PubMed  Google Scholar 

  168. Sammar M, Sieber C, Knaus P. Biochemical and functional characterization of the Ror2/BRIb receptor complex. Biochem Biophys Res Commun. 2009;38:1–6.

    Google Scholar 

  169. Kim C, Forrester WC. Functional analysis of the domains of the C elegans Ror receptor tyrosine kinase CAM-1. Dev Biol. 2003;264(2):376–90.

    CAS  PubMed  Google Scholar 

  170. Schleiffarth JR, Person AD, Martinsen BJ, Sukovich DJ, Neumann A, Baker CV, et al. Wnt5a is required for cardiac outflow tract septation in mice. Pediatr Res. 2007;61(4):386–91.

    PubMed  Google Scholar 

  171. Cervantes S, Yamaguchi TP, Hebrok M. Wnt5a is essential for intestinal elongation in mice. Dev Biol. 2009;326(2):285–94.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Minami .

Editor information

Editors and Affiliations

Receptor at a glance; Ror1

Receptor at a glance; Ror1

Chromosome location

1p32-p31 (human), 4 49.6 cM (mouse)

Gene Size (bp)

405018 bp (human), 346755 bp (mouse)

Intron/exon numbers

Intron: 8/exon: 9 (human and mouse)

mRNA size (ORF)

3382 bases (ORF: 2814 bases) (human),

3542 bases (ORF: 2814 bases) (mouse)

Amino acid number

937 (human and mouse)

kDa

MW: 104 kDa, SDS-PAGE: 135 kDa

Posttranslational modifications

phosphorylation, glycosylation, ubiquitination

Domains

immunoglobulin-like domain, cysteine-rich domain, kringle domain, tyrosine kinase domain, serine/threonine-rich domain, proline-rich domain

Ligands

Wnt5a (see text for details)

Known dimerizing partners

Ror2

Pathways activated

See text for details

Tissues expressed

See text for details

Human Diseases

malignancy

Knockout Mouse phenotype

See Table 13.1

Receptor at a glance; Ror2

Chromosome location

9q22.31 (human), 13 34.2 cM (mouse)

Gene Size (bp)

227567 bp (human), 176793 bp (mouse)

Intron/exon numbers

Intron: 8/exon: 9 (human and mouse)

mRNA size

4099 bases (ORF: 2832 bases) (human),

3987 bases (ORF: 2835 bases) (mouse)

Amino acid number

943 (human), 944 (mouse)

kDa

MW: 105 kDa, SDS-PAGE: 135 kDa

Posttranslational modifications

phosphorylation, O-sulfonation

Domains

immunoglobulin-like domain, cysteine-rich domain, kringle domain,

tyrosine kinase domain, serine/threonine-rich domain, proline-rich domain

Ligands

Wnt5a (see text for details)

Known dimerizing partners

See Table 13.4

Pathways activated

See text for details

Tissues expressed

See text for details

Human Diseases

autosomal dominant Brachydactyly type B (BDB), autosomal recessive Robinow syndrome (RRS)

Knockout Mouse phenotype

See Table 13.1

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Endo, M., Nishita, M., Doi, R., Hayashi, M., Minami, Y. (2015). The ROR Receptor Family. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Family and Subfamilies. Springer, Cham. https://doi.org/10.1007/978-3-319-11888-8_13

Download citation

Publish with us

Policies and ethics