Skip to main content
  • 1000 Accesses

Abstract

Niacin is biosynthesized from l-tryptophan (Trp). There is a substantial amount of Trp in the body which can be efficiently converted to niacin especially during critical situations. Therefore, it is very important to know the factors affecting the conversion ratio of Trp to niacin. In animal experiments, the conversion ratios decreased with increasing dietary protein levels. Feeding of diets containing unsaturated fatty acids increased the conversion ratio, while feeding of diets with saturated fatty acids did not. In the effects of carbohydrate, the conversion ratio was higher in diets containing starch than in diets containing sucrose. Vitamin B1, vitamin B2, or vitamin B6 deficiency affects the metabolism of Trp to niacin. Mineral deficiency also affects the metabolism of Trp to niacin. With regard to hormones, thyroxin increased the Trp to niacin conversion ratio, while estrone, progesterone, and adrenaline decreased. Certain chemicals can also impact niacin synthesis; alloxane and streptozotocin decreased the conversion ratio, while pyrazinamide, phthalates, valproic acid, and clofibrate increased the ratio. Moderate food restriction greatly decreased the conversion. In human experiments, the urinary excretion ratio of anthranilic acid formation from Trp was calculated to be approximately 0.06 % against Trp intake, kynurenic acid 0.13 %, xanthurenic acid 0.11 %, 3-hydroxyanthranilic acid 0.13 %, and quinolinic acid 0.34 % in basal metabolic level. Supplementing healthy women with up to 5.0 g/day of Trp had no adverse effects. Urinary excretion of 3-hydroxykynurenine is a good surrogate biomarker for excess Trp ingestion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACMS:

2-Amino-3-carboxymuconate-6-semialdehyde

ACMSD:

2-Amino-3-carboxymuconate-6-semialdehyde decarboxylase

AnA:

Anthranilic acid

3-HA:

3-Hydroxyanthranilic acid

3-HK:

3-Hydroxykynurenine

IDO:

Indoleamine 2,3-dioxygenase

KA:

Kynurenic acid

KYN:

Kynurenine

MNA:

N 1-methylnicotinamide

Nam:

Nicotinamide

NiA:

Nicotinic acid

2-Py:

N 1-methyl-2-pyridone-5-carboxamide

4-Py:

N 1-methyl-4-pyridone-3-carboxamide

PiA:

Picolinic acid

QA:

Quinolinic acid

TDO:

Tryptophan 2,3-dioxygenase

Trp:

l-Tryptophan

XA:

Xanthurenic acid

References

  1. Horwitt MK, Harvey C, Rothwell W, Cutler J, Haffron D. Tryptophan-niacin relationships in man studies with diets deficient in riboflavin and niacin, together with observations on the excretion of nitrogen and niacin metabolites. J Nutr. 1956;60(1 Suppl):1–43.

    Google Scholar 

  2. Goldsmith GA, Miller ON, Unglaub WG. Efficiency of tryptophan as a niacin precursor in man. J Nutr. 1961;73(2):172–6.

    CAS  Google Scholar 

  3. Nakagawa I, Takahashi T, Sasaki A, Kajimoto M, Suzuki T. Efficiency of conversion of tryptophan to niacin in humans. J Nutr. 1973;103(8):1195–9.

    CAS  PubMed  Google Scholar 

  4. Fukuwatari T, Ohta M, Kimtjra N, Sasaki R, Shibata K. Conversion ratio of tryptophan to niacin in Japanese women fed a purified diet conforming to the Japanese dietary reference intakes. J Nutr Sci Vitaminol. 2004;50(6):385–91.

    Article  CAS  PubMed  Google Scholar 

  5. Wertz AW, Lojkin ME, Bouchard BS, Derby MB. Tryptophan-niacin relationships in pregnancy. J Nutr. 1958;64(3):339–53.

    CAS  PubMed  Google Scholar 

  6. Shibata K, Onodera M, Aihara S. High-performance liquid chromatographic measurement of tryptophan in blood, tissues, urine, and foodstuffs with electrochemical and fluorometric detections. Agric Biol Chem. 1991;55(6):1475–81.

    Article  CAS  PubMed  Google Scholar 

  7. Fukuwatari T, Ohsaki S, Fukuoka S, Sasaki R, Shibata K. Phthalate esters enhance quinolinate production by inhibiting alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD), a key enzyme of the tryptophan pathway. Toxicol Sci. 2004;81(2):302–8. doi:10.1093/toxsci/kfh204.

    Article  CAS  PubMed  Google Scholar 

  8. Shibata K. Fluorimetric micro-determination of kynurenic acid, an endogenous blocker of neurotoxicity, by high-performance liquid chromatography. J Chromatogr. 1988;430(2):376–80.

    Article  CAS  PubMed  Google Scholar 

  9. Shibata K, Onodera M. Measurement of 3-hydroxyanthranilic acid and anthranilic acid in urine by high-performance liquid chromatography (analytical chemistry). Agric Biol Chem. 1991;55(1):143–8.

    Article  CAS  Google Scholar 

  10. Shibata K, Onodera M. Simultaneous high-performance liquid chromatographic measurement of xanthurenic acid and 3-hydroxyanthranilic acid in urine. Biosci Biotechnol Biochem. 1992;56(6):974.

    Article  CAS  Google Scholar 

  11. Shibata K, Yasui M, Sano M, Fukuwatari T. Fluorometric determination of 2-oxoadipic acid, a common metabolite of tryptophan and lysine, by high-performance liquid chromatography with pre-chemical derivatization. Biosci Biotechnol Biochem. 2011;75(1):185–7. doi:10.1271/bbb.100723.

    Article  CAS  PubMed  Google Scholar 

  12. Mawatari K, Oshida K, Iinuma F, Watanabe M. Determination of quinolinic acid by liquid chromatography with fluorimetric detection. Adv Exp Med Biol. 1996;398:697–701.

    Article  CAS  PubMed  Google Scholar 

  13. Shibata K. Ultramicro-determination of N 1-methylnicotinamide in urine by high-performance liquid chromatography. Vitamins. 1987;61:599–604.

    Google Scholar 

  14. Shibata K, Kawada T, Iwai K. Simultaneous micro-determination of nicotinamide and its major metabolites, N1-methyl-2-pyridone-5-carboxamide and N1-methyl-4-pyridone-3-carboxamide, by high-performance liquid chromatography. J Chromatogr. 1988;424(1):23–8.

    Article  CAS  PubMed  Google Scholar 

  15. Shibata K. Tryptophan-niacin metabolism in alloxan diabetic rats and partial prevention of alloxan diabetes by nicotinamide (biological chemistry). Agric Biol Chem. 1987;51(3):811–16.

    Article  CAS  Google Scholar 

  16. Ichiyama A, Nakamura S, Kawai H, Honjo T, Nishizuka Y, Hayaishi O, et al. Studies on the metabolism of the benzene ring of tryptophan in mammalian tissues. II. Enzymic formation of alpha-aminomuconic acid from 3-hydroxyanthranilic acid. J Biol Chem. 1965;240:740–9.

    CAS  PubMed  Google Scholar 

  17. Shibata K, Fukuwatari T, Sugimoto E. Reversed-phase high-performance liquid chromatography of nicotinic acid mononucleotide for measurement of quinolinate phosphoribosyltransferase. J Chromatogr B Biomed Sci Appl. 2000;749(2):281–5.

    Article  CAS  PubMed  Google Scholar 

  18. Shibata K. Effects of protein-amino acids, lipid, and carbohydrate on the conversion ratio of tryptophan to niacin. Vitamins (in Japanese). 1996;70:369–82.

    CAS  Google Scholar 

  19. Krehl WA, Teply LJ, Elvehjem CA. Corn as an etiological factor in the production of a nicotinic acid deficiency in the rat. Science. 1945;101(2620):283. doi:10.1126/science.101.2620.283.

    Article  CAS  PubMed  Google Scholar 

  20. Kimura N, Fukuwatari T, Sasaki R, Shibata K. The necessity of niacin in rats fed on a high protein diet. Biosci Biotechnol Biochem. 2005;69(2):273–9. doi:10.1271/bbb.69.273.

    Article  CAS  PubMed  Google Scholar 

  21. Shibata K, Nomamoto R, Iwai K. Effect of dietary protein levels on the urinary excretion of nicotinamide and its metabolites in rats (Food & Nutrition). Agric Biol Chem. 1988;52(7):1765–9.

    Article  CAS  Google Scholar 

  22. Shibata K, Matsuo H. Effect of dietary tryptophan levels on the urinary excretion of nicotinamide and its metabolites in rats fed a niacin-free diet or a constant total protein level. J Nutr. 1990;120(10):1191–7.

    CAS  PubMed  Google Scholar 

  23. Shibata K. Conversion ratio of tryptophan to niacin in rats fed with a nicotinic acid-free, tryptophan-limiting diet. Biosci Biotechnol Biochem. 1995;59(4):715–16.

    Article  CAS  PubMed  Google Scholar 

  24. Shibata K, Shimada H, Kondo T. Effects of feeding tryptophan-limiting diets on the conversion ratio of tryptophan to niacin in rats. Biosci Biotechnol Biochem. 1996;60(10):1660–6. doi:10.1271/bbb.60.1660.

    Article  CAS  PubMed  Google Scholar 

  25. Shibata K, Taniguchi I, Onodera M. Effect of adding branched-chain amino acids to a nicotinic acid-free, low-protein diet on the conversion ratio of tryptophan to nicotinamide in rats. Biosci Biotechnol Biochem. 1994;58(5):970–1.

    Article  CAS  Google Scholar 

  26. Shibata K, Toda S. Effects of thyroxine on the conversion ratio of tryptophan to nicotinamide in rats. Biosci Biotechnol Biochem. 1994;58(10):1757–62.

    Article  CAS  Google Scholar 

  27. Shibata K, Onodera M. Changes in the conversion rate of tryptophan-nicotinamide according to dietary fat and protein levels. Biosci Biotechnol Biochem. 1992;56(7):1104–8.

    Article  CAS  Google Scholar 

  28. Shibata K, Kondo T, Miki A. Increased conversion ratio of tryptophan to niacin in severe food restriction. Biosci Biotechnol Biochem. 1998;62(3):580–3. doi:10.1271/bbb.62.580.

    Article  CAS  PubMed  Google Scholar 

  29. Shibata K, Nakata C, Fukuwatari T. Moderate food restriction suppresses the conversion of L-tryptophan to nicotinamide in weaning rats. Biosci Biotechnol Biochem. 2014;78(3):478–81. doi:10.1080/09168451.2014.890025.

    Article  CAS  PubMed  Google Scholar 

  30. Shibata K, Toda S. Effects of sex hormones on the metabolism of tryptophan to niacin and to serotonin in male rats. Biosci Biotechnol Biochem. 1997;61(7):1200–2. doi:10.1271/bbb.61.1200.

    Article  CAS  PubMed  Google Scholar 

  31. Shibata K, Kobayashi R, Fukuwatari T. Vitamin B1 deficiency inhibits the increased conversion of tryptophan to nicotinamide in severe food-restricted rats. Biosci Biotechnol Biochem. 2014;1–6. doi:10.1080/09168451.2014.962473.

  32. Shibata K. The catabolism of nicotinamide in riboflavin-deficient rats. Vitamins (in Japanese). 1990;64:589–95.

    CAS  Google Scholar 

  33. Shibata K, Mushiage M, Kondo T, Hayakawa T, Tsuge H. Effects of vitamin B6 deficiency on the conversion ratio of tryptophan to niacin. Biosci Biotechnol Biochem. 1995;59(11):2060–3. doi:10.1271/bbb.59.2060.

    Article  CAS  PubMed  Google Scholar 

  34. Okamoto H, Okada F, Hayaishi O. Kynurenine metabolism in hyperthyroidism. A biochemical basis for the low NAD(P) level in hyperthyroid rat liver. J Biol Chem. 1971;246(24):7759–63.

    CAS  PubMed  Google Scholar 

  35. Miller DF. Pellagra deaths in the United States. Am J Clin Nutr. 1978;31(4):558–9.

    CAS  PubMed  Google Scholar 

  36. Shibata K, Kondo T. Effect of progesterone and estrone on the conversion of tryptophan to nicotinamide in rats. Biosci Biotechnol Biochem. 1993;57:1890–3.

    Article  CAS  Google Scholar 

  37. Shibata K. Tryptophan-NAD metabolism in streptozotocin diabetic rats. Agric Biol Chem. 1988;52:1993–8.

    Article  CAS  Google Scholar 

  38. Shibata K, Ogawa A, Taniguchi I. Effects of dietary 6-aminonicotinamide, an antagonist of nicotinamide, on the metabolism of tryptophan to nicotinamide in rats. Biosci Biotechnol Biochem. 1994;58(4):727–33.

    Article  CAS  Google Scholar 

  39. Shibata K. Effects of adrenalin on the conversion ratio of tryptophan to niacin in rats. Biosci Biotechnol Biochem. 1995;59(11):2127–9.

    Article  CAS  PubMed  Google Scholar 

  40. Shibata K. Effect of prednisolone on the urinary excretion of nicotinamide and its metabolites in rats fed with a niacin-free diet. Agric Biol Chem. 1990;54(5):1195–200.

    Google Scholar 

  41. Shibata K. Effects of pyrazinamide on tryptophan-niacin conversion in rats (Biological Chemistry). Agric Biol Chem. 1990;54(9):2463–4.

    Article  CAS  Google Scholar 

  42. Fukuwatari T, Sugimoto E, Shibata K. Growth-promoting activity of pyrazinoic acid, a putative active compound of antituberculosis drug pyrazinamide, in niacin-deficient rats through the inhibition of ACMSD activity. Biosci Biotechnol Biochem. 2002;66(7):1435–41. doi:10.1271/bbb.66.1435.

    Article  CAS  PubMed  Google Scholar 

  43. Shibata K, Fukuwatari T, Enomoto A, Sugimoto E. Increased conversion ratio of tryptophan to niacin by dietary di-n-butylphthalate. J Nutr Sci Vitaminol. 2001;47(3):263–6.

    Article  CAS  PubMed  Google Scholar 

  44. Shibata K, Kondo R, Sano M, and Fukuwatari T. Dietary valproate increases the conversion of tryptophan to nicotinamide in rats. Biosci Biotechnol Biochem. 2013;77(2):295–300.

    Google Scholar 

  45. Shibata K, Kondo T, Marugami M, Umezawa C. Increased conversion ratio of tryptophan to niacin by the administration of clofibrate, a hypolipidemic drug, to rats. Biosci Biotechnol Biochem. 1996;60(9):1455–9. doi:10.1271/bbb.60.1455.

    Article  CAS  PubMed  Google Scholar 

  46. Okuno A, Fukuwatari T, Shibata K. Urinary excretory ratio of anthranilic acid/kynurenic acid as an index of the tolerable amount of tryptophan. Biosci Biotechnol Biochem. 2008;72(7):1667–72. doi:10.1271/bbb.70630.

    Article  CAS  PubMed  Google Scholar 

  47. Shibata K, Tanaka K, Murata K. Efficiency of exogenous quinolinic acid as niacin in rats (Food & Nutrition). Agric Biol Chem. 1986;50(8):2025–32.

    Article  CAS  Google Scholar 

  48. Shibata K, Fukuwartari T. Large amounts of picolinic acid are lethal but small amounts increase the conversion of tryptophan-nicotinamine in rats. J Nutr Sci Vitaminol. 2014;60:335–40.

    Google Scholar 

  49. Hiratsuka C, Fukuwatari T, Shibata K. Fate of dietary tryptophan in young Japanese women. Int J Tryptophan Res. 2012;5:33–47. doi:10.4137/IJTR.S10497.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Hiratsuka C, Fukuwatari T, Sano M, Saito K, Sasaki S, Shibata K. Supplementing healthy women with up to 5.0 g/d of L-tryptophan has no adverse effects. J Nutr. 2013;143(6):859–66. doi: 10.3945/jn.112.173823.

  51. Fukuwatari T, Shibata K. Effect of nicotinamide administration on the tryptophan-nicotinamide pathway in humans. Int J Vitam Nutr Res. 2007;77(4):255–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation was part of the project “Studies on the nutritional evaluation of amino acids and B-group vitamins” (principal investigator, Katsumi Shibata), which was supported by a Research Grant for Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science. This study was also part of the project entitled “Development of an index of metabolic upper intake level instead of tolerable upper intake level of tryptophan for humans” (principal investigator, Katsumi Shibata), which was supported by The International Council on Amino Acid Science (ICAAS) Research Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumi Shibata Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shibata, K. (2015). Nutritional Aspects of Tryptophan Metabolism. In: Mittal, S. (eds) Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, Cham. https://doi.org/10.1007/978-3-319-11870-3_3

Download citation

Publish with us

Policies and ethics