Skip to main content

Tryptophan Metabolism and the Hepatic Kynurenine Pathway in Health and Disease

  • Chapter
Targeting the Broadly Pathogenic Kynurenine Pathway

Abstract

Tryptophan (TRP) metabolism and disposition are reviewed with particular emphasis on the hepatic kynurenine pathway (HKP) in health and disease. Over 95 % of dietary TRP is metabolized in the HKP, which is controlled mainly by tryptophan 2,3-dioxygenase (TDO) and produces important metabolites affecting functions in the brain and periphery. TDO is regulated by glucocorticoids, the substrate TRP, and the cofactor heme and by feedback inhibition by reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H). TDO activity determines the rate of TRP degradation and hence its availability and that of its kynurenine (KYN) metabolites for various functions. TDO controls synthesis of heme in liver and serotonin (5-HT) in brain. TDO plays a central role in alcoholism, which exerts multiple effects on the HKP. The 5-HT deficiency in major depressive disorder (MDD) is due to a high TDO activity and antidepressant drugs act in part as TDO inhibitors. Only the HKP contains all the necessary enzymes for nicotinamide adenine dinucleotide (NAD+) synthesis and so plays the central role in pellagra. Criteria for assessing TRP oxidation are proposed. TDO may play a central role in the hepatic porphyrias by utilizing the regulatory heme pool. Maternal TRP availability is enhanced throughout pregnancy by TDO inhibition and altered TRP disposition. Immune activation does not play a role in TRP disposition during pregnancy nor in the 5-HT deficiency in MDD. Liver TDO inhibition is a potential strategy for treatment of depression, hepatic porphyrias, and cancer in view of emerging evidence of the role of TDO in cancer biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Anthranilic acid

BCAA:

Branched-chain amino acids

CAA:

Competing amino acids

FAD:

Flavin-adenine dinucleotide

3-HAA:

3-hydroxyanthranilic acid

5-HIAA:

5-hydroxyindole-3-acetic acid

3-HK:

3-hydroxykynurenine

HKP:

Hepatic kynurenine pathway

5-ALAS:

5-aminolaevulinate synthase

5-HT:

5-hydroxytryptamine or serotonin

5-HTP:

5-hydroxytryptophan

IDO:

Indoleamine 2,3-dioxygenase

IFN-α:

Interferon-alpha

IFN-γ:

Interferon-gamma

KA:

Kynurenic acid

KP:

Kynurenine pathway

KYN:

Kynurenine

MDD:

Major depressive disorder

NAD+ :

Oxidized nicotinamide adenine dinucleotide

NADH:

Reduced nicotinamide adenine dinucleotide

NADP+ :

Oxidized nicotinamide adenine dinucleotide phosphate

NAD(P)H:

Reduced nicotinamide adenine dinucleotide phosphate

NEFA:

Non-esterified fatty acids

NMDA:

N-methyl-D-aspartate

PA:

Picolinic acid

PLP:

Pyridoxal 5´-phosphate

QUIN:

Quinolinic acid

TRP:

Tryptophan

TDO:

Tryptophan 2,3-dioxygenase

TTOX:

Total tryptophan oxidation

TTOXF:

Total tryptophan oxidation relative to plasma-free tryptophan

References

  1. Bender DA. Biochemistry of tryptophan in health and disease. Mol Aspects Med. 1983;6(2):101–97.

    Article  CAS  PubMed  Google Scholar 

  2. Badawy AA. Tryptophan metabolism in alcoholism. Nutr Res Rev. 2002;15(1):123–52.

    Article  CAS  PubMed  Google Scholar 

  3. Michael AF, Drummond KN, Doeden D, Anderson JA, Good RA. Tryptophan metabolism in man. J Clin Invest. 1964;43:1730–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Green AR, Aronson JK, Curzon G, Woods HF. Metabolism of an oral tryptophan load I: Effects of dose and pretreatment with tryptophan. Br J Clin Pharmacol. 1980;10(6):603–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Heuther G, Hajak G, Reimer A, Poeggeler B, Blomer M, Rodenbeck A, et al. The metabolic fate of infused L-tryptophan in men: possible clinical implications of the accumulation of circulating tryptophan and tryptophan metabolites. Psychopharmacology (Berl). 1992;109(4):422–32.

    Article  CAS  Google Scholar 

  6. Badawy AA. Plasma free tryptophan revisited: what you need to know and do before measuring it. J Psychopharmacol. 2010;24(6):809–15.

    Article  CAS  PubMed  Google Scholar 

  7. Badawy AA. The tryptophan utilization concept in pregnancy. Obstet Gynecol Sci. 2014;57(4):249–59.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Williams Jr JN, Feigelson P, Elvehjem CA. Relation of tryptophan and niacin to pyridine nucleotides of tissue. J Biol Chem. 1950;187(2):597–604.

    CAS  PubMed  Google Scholar 

  9. Salter M, Knowles RG, Pogson CI. Quantification of the importance of individual steps in the control of aromatic amino acid metabolism. Biochem J. 1986;234(3):635–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Badawy AA, Evans M. Animal liver tryptophan pyrrolases: absence of apoenzyme and of hormonal induction mechanism from species sensitive to tryptophan toxicity. Biochem J. 1976;158(1):79–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Badawy AA, Evans M. Regulation of rat liver tryptophan pyrrolase by its cofactor haem: Experiments with haematin and 5-aminolaevulinate and comparison with the substrate and hormonal mechanisms. Biochem J. 1975;150(3):511–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Badawy AA, Welch AN, Morgan CJ. Tryptophan pyrrolase in haem regulation. The mechanism of the opposite effects of tryptophan on rat liver 5-aminolaevulinate synthase activity and the haem saturation of tryptophan pyrrolase. Biochem J. 1981;198(2):309–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ren S, Correia MA. Heme: a regulator of rat hepatic tryptophan 2,3-dioxygenase? Arch Biochem Biophys. 2000;377(1):195–203.

    Article  CAS  PubMed  Google Scholar 

  14. Badawy AA. Central role of tryptophan pyrrolase in haem metabolism. Biochem Soc Trans. 1979;7(3):575–83.

    Article  CAS  PubMed  Google Scholar 

  15. Badawy AA. Tryptophan and inhibitors of tryptophan 2,3-dioxygenase as antidepressants: reply. J Psychopharmacol. 2014;28(2):169–72.

    Article  PubMed  Google Scholar 

  16. Haber R, Bessette D, Hulihan-Giblin B, Durcan MJ, Goldman D. Identification of tryptophan 2,3-dioxygenase RNA in rodent brain. J Neurochem. 1993;60(3):1159–62.

    Article  CAS  PubMed  Google Scholar 

  17. Platten M, Wick W, Van den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res. 2012;72(21):5435–40.

    Article  CAS  PubMed  Google Scholar 

  18. Dolusic E, Larrieu P, Moineaux L, Stroobant V, Pilotte L, Colau D, et al. Tryptophan 2,3-dioxygenase (TDO) inhibitors. 3-(2-(pyridyl)ethenyl)indoles as potential anticancer immunomodulators. J Med Chem. 2011;54(15):5320–34.

    Article  CAS  PubMed  Google Scholar 

  19. Pantouris G, Mowat CG. Antitumour agents as inhibitors of tryptophan 2,3-dioxygenase. Biochem Biophys Res Commun. 2014;443(1):28–31.

    Article  CAS  PubMed  Google Scholar 

  20. Austin CJD, Mailu B, Maghzal G, Sanchez-Perez A, Rahlfs S, Zocher K, et al. Biochemical characteristics and inhibitor selectivity of mouse indoleamine 2, 3-dioxygenase-2. Amino acids. 2010;39(2):565–78.

    Article  CAS  PubMed  Google Scholar 

  21. Opitz CA, Litzenburger UM, Opitz U, Sahm F, Ochs K, Lutz C, et al. The indoleamine-2,3-dioxygenase (IDO) inhibitor 1-methyl-D-tryptophan upregulates IDO1 in human cancer cells. PLoS One. 2011;6(5), e19823.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kolodziej LR, Paleolog EM, Williams RO. Kynurenine metabolism in health and disease. Amino acids. 2011;41(5):1173–83.

    Article  CAS  PubMed  Google Scholar 

  23. Badawy A, Lake SL, Dougherth DM. Mechanisms of the pellagragenic effect of leucine: stimulation of hepatic tryptophan oxidation by administration of branched-chain amino acids to healthy human volunteers and the role of plasma free tryptophan and total kynureniens. Int J Tryptophan Res. 2014;7:23–32.

    Google Scholar 

  24. Badawy AA, Morgan CJ, Lovett JW, Bradley DM, Thomas R. Decrease in circulating tryptophan availability to the brain after acute ethanol consumption by normal volunteers: implications for alcohol-induced aggressive behaviour and depression. Pharmacopsychiatry. 1995;28 Suppl 2:93–7.

    Article  PubMed  Google Scholar 

  25. Badawy AA, Morgan CJ, Lane J, Dhaliwal K, Bradley DM. Liver tryptophan pyrrolase. A major determinant of the lower brain 5-hydroxytryptamine concentration in alcohol-preferring C57BL mice. Biochem J. 1989;264(2):597–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Shibata K. Effects of alcohol feeding and growth on the tryptophan-niacin metabolism in rats. Agric Biol Chem. 1990;54:2953–9.

    Article  CAS  Google Scholar 

  27. Badawy AA, Rommelspacher H, Morgan CJ, Bradley DM, Bonner A, Ehlert A, et al. Tryptophan metabolism in alcoholism. Tryptophan but not excitatory amino acid availability to the brain is increased before the appearance of the alcohol-withdrawal syndrome in men. Alcohol Alcohol. 1998;33(6):616–25.

    Article  CAS  PubMed  Google Scholar 

  28. Friedman MJ, Krstulovic AM, Severinghaus JM, Brown SJ. Altered conversion of tryptophan to kynurenine in newly abstinent alcoholics. Biol Psychiatry. 1988;23(1):89–93.

    Article  CAS  PubMed  Google Scholar 

  29. Badawy AA. Pellagra and alcoholism: a biochemical perspective. Alcohol Alcohol. 2014;49(3):238–50.

    Article  CAS  PubMed  Google Scholar 

  30. Gleissenthall GV, Geisler S, Malik P, Kemmler G, Benicke H, Fuchs D, et al. Tryptophan metabolism in post-withdrawal alcohol-dependent patients. Alcohol Alcohol. 2014;49(3):251–5.

    Article  CAS  PubMed  Google Scholar 

  31. Badawy AA. Tryptophan: the key to boosting brain serotonin synthesis in depressive illness. J Psychopharmacol. 2013;27(10):878–93.

    Article  PubMed  Google Scholar 

  32. Werner ER, Fuchs D, Hausen A, Jaeger H, Reibnegger G, Werner-Felmayer G, et al. Tryptophan degradation in patients infected by human immunodeficiency virus. Biol Chem Hoppe Seyler. 1988;369(5):337–40.

    Article  CAS  PubMed  Google Scholar 

  33. Fuchs D, Forsman A, Hagberg L, Larsson M, Norkrans G, Reibnegger G, et al. Immune activation and decreased tryptophan in patients with HIV-1 infection. J Interferon Res. 1990;10(6):599–603.

    Article  CAS  PubMed  Google Scholar 

  34. Badawy AA. Heme utilization by rat liver tryptophan pyrrolase as a screening test for exacerbation of hepatic porphyrias by drugs. J Pharmacol Methods. 1981;6(2):77–85.

    Article  CAS  PubMed  Google Scholar 

  35. Chemmanur AT, Bonkovsky HL. Hepatic porphyrias: diagnosis and management. Clin Liver Dis. 2004;8(4):807–38.

    Article  PubMed  Google Scholar 

  36. Ajioka RS, Phillips JD, Kushner JP. Biosynthesis of heme in mammals. Biochim Biophys Acta. 2006;1763(7):723–36.

    Article  CAS  PubMed  Google Scholar 

  37. Handschin C, Lin J, Rhee J, Peyer AK, Chin S, Wu PH, et al. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha. Cell. 2005;122(4):505–15.

    Article  CAS  PubMed  Google Scholar 

  38. Badawy AA, Welch AN, Morgan CJ. Tryptophan pyrrolase in haem regulation. The mechanisms of enhancement of rat liver 5-aminolaevulinate synthase activity by starvation and of the glucose effect on induction of the enzyme by 2-allyl-2-isopropylacetamide. Biochem J. 1982;206(3):441–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Litman DA, Correia MA. L-tryptophan: a common denominator of biochemical and neurological events of acute hepatic porphyria? Science. 1983;222(4627):1031–3.

    Article  CAS  PubMed  Google Scholar 

  40. Price JM, Brown RR, Peters HA. Tryptophan metabolism in porphyria, schizophrenia, and a variety of neurologic and psychiatric diseases. Neurology. 1959;9(7):456–68.

    Article  CAS  PubMed  Google Scholar 

  41. Puy H, Deybach JC, Baudry P, Callebert J, Touitou Y, Nordmann Y. Decreased nocturnal plasma melatonin levels in patients with recurrent acute intermittent porphyria attacks. Life Sci. 1993;53(8):621–7.

    Article  CAS  PubMed  Google Scholar 

  42. Bonkovsky HL, Healey JF, Lourie AN, Gerron GG. Intravenous heme-albumin in acute intermittent porphyria: evidence for repletion of hepatic hemoproteins and regulatory heme pools. Am J Gastroenterol. 1991;86(8):1050–6.

    CAS  PubMed  Google Scholar 

  43. Smith SA, Carr FP, Pogson CI. The metabolism of L-tryptophan by isolated rat liver cells. Quantification of the relative importance of, and the effect of nutritional status on, the individual pathways of tryptophan metabolism. Biochem J. 1980;192(2):673–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Badawy AA. Effects of pregnancy on tryptophan metabolism and disposition in the rat. Biochem J. 1988;255(1):369–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281(5380):1191–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author holds an honorary professorial position at Cardiff Metropolitan University and declares that there is no conflict of interest related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulla A.-B. Badawy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Badawy, A.AB. (2015). Tryptophan Metabolism and the Hepatic Kynurenine Pathway in Health and Disease. In: Mittal, S. (eds) Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, Cham. https://doi.org/10.1007/978-3-319-11870-3_2

Download citation

Publish with us

Policies and ethics