Skip to main content

The Role of Kynurenine Pathway in Pain and Migraine

  • Chapter
Book cover Targeting the Broadly Pathogenic Kynurenine Pathway

Abstract

Migraine is a highly prevalent, disabling primary headache disorder which has a high socioeconomic impact. Its pathomechanism involves peripheral and central sensitization processes and activation of the trigeminovascular system. Alterations in the glutamatergic neurotransmission and the activation of excitatory receptors leading to neuronal hyperexcitability have been implicated in the pathomechanism of different pain syndromes, including migraine and neuropathic pain. The pharmacological management of these disorders is often a challenge, and the identification of possible new druggable targets is therefore at the focus of research interest. The kynurenine pathway involves several neuroactive metabolites which can influence glutamatergic neurotransmission and may therefore be promising novel candidates for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-HK:

3-Hydroxykynurenine

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

CSD:

Cortical spreading depression

Glu:

Glutamate

KAT:

Kynurenine aminotransferase

KMO:

Kynurenine monooxygenase

KP:

Kynurenine pathway

KYN:

l-Kynurenine

KYNA:

Kynurenic acid

Mg2+ :

Magnesium

NMDA:

N-methyl-d-aspartate

nNOS:

n-Nitric oxide synthase

QUIN:

Quinolinic acid

Trp:

Tryptophan

References

  1. Wolf H. The effect of hormones and vitamin B6 on urinary excretion of metabolites of the kynurenine pathway. Scand J Clin Lab Invest Suppl. 1974;136:1–186.

    CAS  PubMed  Google Scholar 

  2. Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, et al. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem. 2001;78(4):842–53.

    Article  CAS  PubMed  Google Scholar 

  3. Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, et al. Characterization of the kynurenine pathway in human neurons. J Neurosci. 2007;27(47):12884–92.

    Article  CAS  PubMed  Google Scholar 

  4. Kessler M, Terramani T, Lynch G, Baudry M. A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem. 1989;52(4):1319–28.

    Article  CAS  PubMed  Google Scholar 

  5. Stone TW. Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev. 1993;45(3):309–79.

    CAS  PubMed  Google Scholar 

  6. Rozsa E, Robotka H, Vecsei L, Toldi J. The Janus-face kynurenic acid. J Neural Transm. 2008;115(8):1087–91.

    Article  CAS  PubMed  Google Scholar 

  7. Prescott C, Weeks AM, Staley KJ, Partin KM. Kynurenic acid has a dual action on AMPA receptor responses. Neurosci Lett. 2006;402(1-2):108–12.

    Article  CAS  PubMed  Google Scholar 

  8. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci. 2001;21(19):7463–73.

    CAS  PubMed  Google Scholar 

  9. Marchi M, Risso F, Viola C, Cavazzani P, Raiteri M. Direct evidence that release-stimulating alpha7* nicotinic cholinergic receptors are localized on human and rat brain glutamatergic axon terminals. J Neurochem. 2002;80(6):1071–8.

    Article  CAS  PubMed  Google Scholar 

  10. Wu HQ, Pereira EF, Bruno JP, Pellicciari R, Albuquerque EX, Schwarcz R. The astrocyte-derived alpha7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex. J Mol Neurosci. 2010;40(1-2):204–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Konradsson-Geuken A, Wu HQ, Gash CR, Alexander KS, Campbell A, Sozeri Y, et al. Cortical kynurenic acid bi-directionally modulates prefrontal glutamate levels as assessed by microdialysis and rapid electrochemistry. Neuroscience. 2010;169(4):1848–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Perez-De La Cruz V, Carrillo-Mora P, Santamaria A. Quinolinic acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms. Int J Tryptophan Res. 2012;5:1–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Edvinsson L, Villalon CM. Maassen Van Den Brink A. Basic mechanisms of migraine and its acute treatment. Pharmacol Ther. 2012;136(3):319–33.

    Article  CAS  PubMed  Google Scholar 

  14. Aurora SK, Wilkinson F. The brain is hyperexcitable in migraine. Cephalalgia. 2007;27(12):1442–53.

    Article  CAS  PubMed  Google Scholar 

  15. Demarquay G, Royet JP, Mick G, Ryvlin P. Olfactory hypersensitivity in migraineurs: a H(2)(15)O-PET study. Cephalalgia. 2008;28(10):1069–80.

    Article  CAS  PubMed  Google Scholar 

  16. Boulloche N, Denuelle M, Payoux P, Fabre N, Trotter Y, Geraud G. Photophobia in migraine: an interictal PET study of cortical hyperexcitability and its modulation by pain. J Neurol Neurosurg Psychiatry. 2010;81(9):978–84.

    Article  PubMed  Google Scholar 

  17. Vaccaro M, Riva C, Tremolizzo L, Longoni M, Aliprandi A, Agostoni E, et al. Platelet glutamate uptake and release in migraine with and without aura. Cephalalgia. 2007;27(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  18. Rajda C, Tajti J, Komoroczy R, Seres E, Klivenyi P, Vecsei L. Amino acids in the saliva of patients with migraine. Headache. 1999;39(9):644–9.

    Article  CAS  PubMed  Google Scholar 

  19. Martinez F, Castillo J, Rodriguez JR, Leira R, Noya M. Neuroexcitatory amino acid levels in plasma and cerebrospinal fluid during migraine attacks. Cephalalgia. 1993;13(2):89–93.

    Article  CAS  PubMed  Google Scholar 

  20. Sarchielli P, Coata G, Firenze C, Morucci P, Abbritti G, Gallai V. Serum and salivary magnesium levels in migraine and tension-type headache. Results in a group of adult patients. Cephalalgia. 1992;12(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  21. Schoenen J, Sianard-Gainko J, Lenaerts M. Blood magnesium levels in migraine. Cephalalgia. 1991;11(2):97–9.

    Article  CAS  PubMed  Google Scholar 

  22. Ramadan NM, Halvorson H, Vande-Linde A, Levine SR, Helpern JA, Welch KM. Low brain magnesium in migraine. Headache. 1989;29(9):590–3.

    Article  CAS  PubMed  Google Scholar 

  23. Longoni M, Ferrarese C. Inflammation and excitotoxicity: role in migraine pathogenesis. Neurol Sci. 2006;27 Suppl 2:S107–10.

    Article  PubMed  Google Scholar 

  24. Storer RJ, Goadsby PJ. Trigeminovascular nociceptive transmission involves N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate receptors. Neuroscience. 1999;90(4):1371–6.

    Article  CAS  PubMed  Google Scholar 

  25. Classey JD, Knight YE, Goadsby PJ. The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity within the trigeminocervical complex following superior sagittal sinus stimulation in the cat. Brain Res. 2001;907(1-2):117–24.

    Article  CAS  PubMed  Google Scholar 

  26. Tajti J, Pardutz A, Vamos E, Tuka B, Kuris A, Bohar Z, et al. Migraine is a neuronal disease. J Neural Transm. 2011;118(4):511–24.

    Article  CAS  PubMed  Google Scholar 

  27. Vecsei L, Szalardy L, Fulop F, Toldi J. Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov. 2013;12(1):64–82.

    Article  CAS  PubMed  Google Scholar 

  28. Vecsei L, Miller J, MacGarvey U, Beal MF. Kynurenine and probenecid inhibit pentylenetetrazol- and NMDLA-induced seizures and increase kynurenic acid concentrations in the brain. Brain Res Bull. 1992;28(2):233–8.

    Article  CAS  PubMed  Google Scholar 

  29. Knyihar-Csillik E, Toldi J, Krisztin-Peva B, Chadaide Z, Nemeth H, Fenyo R, et al. Prevention of electrical stimulation-induced increase of c-fos immunoreaction in the caudal trigeminal nucleus by kynurenine combined with probenecid. Neurosci Lett. 2007;418(2):122–6.

    Article  CAS  PubMed  Google Scholar 

  30. Knyihar-Csillik E, Toldi J, Mihaly A, Krisztin-Peva B, Chadaide Z, Nemeth H, et al. Kynurenine in combination with probenecid mitigates the stimulation-induced increase of c-fos immunoreactivity of the rat caudal trigeminal nucleus in an experimental migraine model. J Neural Transm. 2007;114(4):417–21.

    Article  CAS  PubMed  Google Scholar 

  31. Vamos E, Pardutz A, Varga H, Bohar Z, Tajti J, Fulop F, et al. l-kynurenine combined with probenecid and the novel synthetic kynurenic acid derivative attenuate nitroglycerin-induced nNOS in the rat caudal trigeminal nucleus. Neuropharmacology. 2009;57(4):425–9.

    Article  CAS  PubMed  Google Scholar 

  32. Vamos E, Fejes A, Koch J, Tajti J, Fulop F, Toldi J, et al. Kynurenate derivative attenuates the nitroglycerin-induced CamKIIalpha and CGRP expression changes. Headache. 2010;50(5):834–43.

    Article  PubMed  Google Scholar 

  33. Lauritzen M, Rice ME, Okada Y, Nicholson C. Quisqualate, kainate and NMDA can initiate spreading depression in the turtle cerebellum. Brain Res. 1988;475(2):317–27.

    Article  CAS  PubMed  Google Scholar 

  34. Vilagi I, Klapka N, Luhmann HJ. Optical recording of spreading depression in rat neocortical slices. Brain Res. 2001;898(2):288–96.

    Article  CAS  PubMed  Google Scholar 

  35. Chauvel V, Vamos E, Pardutz A, Vecsei L, Schoenen J, Multon S. Effect of systemic kynurenine on cortical spreading depression and its modulation by sex hormones in rat. Exp Neurol. 2012;236(2):207–14.

    Article  CAS  PubMed  Google Scholar 

  36. Olah G, Heredi J, Menyhart A, Czinege Z, Nagy D, Fuzik J, et al. Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood-brain barrier permeability. Drug Des Devel Ther. 2013;7:981–7.

    PubMed Central  PubMed  Google Scholar 

  37. Morgan MM, Bobeck EN, Ingram SL. Glutamate modulation of antinociception, but not tolerance, produced by morphine microinjection into the periaqueductal gray of the rat. Brain Res. 2009;1295:59–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Fejes-Szabo A, Bohar Z, Vamos E, Nagy-Grocz G, Tar L, Veres G, et al. Pre-treatment with new kynurenic acid amide dose-dependently prevents the nitroglycerine-induced neuronal activation and sensitization in cervical part of trigemino-cervical complex. J Neural Transm. 2014;121(7):725–38.

    Article  CAS  PubMed  Google Scholar 

  39. Mecs L, Tuboly G, Nagy E, Benedek G, Horvath G. The peripheral antinociceptive effects of endomorphin-1 and kynurenic acid in the rat inflamed joint model. Anesth Analg. 2009;109(4):1297–304.

    Article  CAS  PubMed  Google Scholar 

  40. Pineda-Farias JB, Perez-Severiano F, Gonzalez-Esquivel DF, Barragan-Iglesias P, Bravo-Hernandez M, Cervantes-Duran C, et al. The L-kynurenine-probenecid combination reduces neuropathic pain in rats. Eur J Pain. 2013;17(9):1365–73.

    Article  CAS  PubMed  Google Scholar 

  41. Fejes-Szabo A, Bohar Z, Nagy-Grocz G, Vamos E, Tar L, Podor B, et al. Effect of probenecid on the pain-related behaviour and morphological markers in orofacial formalin test of the rat. CNS Neurol Disord Drug Targets. 2015;14(3):350–9.

    Article  CAS  PubMed  Google Scholar 

  42. Brun P, Suaud-Chagny MF, Lachuer J, Gonon F, Buda M. Catecholamine metabolism in locus coeruleus neurons: a study of its activation by sciatic nerve stimulation in the rat. Eur J Neurosci. 1991;3(5):397–406.

    Article  PubMed  Google Scholar 

  43. Cosi C, Mannaioni G, Cozzi A, Carla V, Sili M, Cavone L, et al. G-protein coupled receptor 35 (GPR35) activation and inflammatory pain: Studies on the antinociceptive effects of kynurenic acid and zaprinast. Neuropharmacology. 2011;60(7-8):1227–31.

    Article  CAS  PubMed  Google Scholar 

  44. Carpenedo R, Pittaluga A, Cozzi A, Attucci S, Galli A, Raiteri M, et al. Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur J Neurosci. 2001;13(11):2141–7.

    Article  CAS  PubMed  Google Scholar 

  45. Guo J, Williams DJ, Puhl 3rd HL, Ikeda SR. Inhibition of N-type calcium channels by activation of GPR35, an orphan receptor, heterologously expressed in rat sympathetic neurons. J Pharmacol Exp Ther. 2008;324(1):342–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the project TÁMOP-4.2.2.A-11/1/KONV-2012-0052, the Hungarian Brain Research Program (NAP, Grant No. KTIA_13_NAP-A-III/9.), EUROHEADPAIN (FP7-Health 2013-Innovation; Grant No. 602633), and the MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences and University of Szeged. Thanks are due to David Durham from the UK for the linguistic corrections of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Vécsei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Majláth, Z., Toldi, J., Vécsei, L. (2015). The Role of Kynurenine Pathway in Pain and Migraine. In: Mittal, S. (eds) Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, Cham. https://doi.org/10.1007/978-3-319-11870-3_18

Download citation

Publish with us

Policies and ethics