Skip to main content

Abstract

Stroke is the second and fifth leading cause of death for people aged >60 and 15–59 years, respectively. Many stroke survivors suffer from chronic health problems that necessitate a long-term process of recovery and rehabilitation. There is increasing evidence that inflammation plays an important role in acute ischemic stroke (AIS), indicating the presence of important interactions between the nervous and immune systems. Furthermore, there are currently strong indications for a close relationship between the immune system and indoleamine-2,3-dioxygenase (IDO)-induced tryptophan catabolism [the kynurenine (KYN) pathway]. Although KYN pathway metabolites can produce excitatory and oxidative neurotoxicity, they can also protect neurons from inflammatory damage and attenuate excitatory neurotoxicity via N-methyl-d-aspartate receptor antagonism. Thus, activation of IDO in the central nervous system might be a double-edged sword. Recent studies indicate that the KYN pathway is activated immediately after a stroke, that this is related to the stroke-induced inflammatory response, and also that this IDO-induced tryptophan catabolism is correlated with a worse outcome. Since activation of the KYN pathway may disturb brain serotonin (5-hydroxytryptamine) and glutamate neurotransmission, it is reasonable to assume that inflammation-induced IDO activity in AIS is involved in several sequelae following stroke, such as cognitive impairment, depression, and fatigue. Many AIS survivors suffer from post-stroke fatigue and post-stroke depression, indicating the importance of increasing the base of knowledge about the mechanisms underlying these sequelae. In this chapter, we present and discuss findings that support the notion that the AIS-induced immune response and IDO activation are related to post-stroke fatigue but not to post-stroke depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-HK:

3-Hydroxykynurenine

AIS:

Acute ischemic stroke

CRP:

C-reactive protein

CSF:

Cerebrospinal fluid

hsCRP:

High-sensitivity C-reactive protein

IDO:

Indoleamine 2,3-dioxygenase

IL:

Interleukin

KA:

Kynurenic acid

KATs:

Kynurenine aminotransferases

KYN:

Kynurenine

NIHSS:

National Institutes of Health Stroke Scale

NMDA:

N-methyl-d-aspartate

PSD:

Post-stroke depression

PSF:

Post-stroke fatigue

QA:

Quinolinic acid

SAR:

Superoxide anion radical

TDO:

Tryptophan 2,3-dioxygenase

TNF-α:

Tumor necrosis factor-α

TRP:

Tryptophan

References

  1. Murray MF. The human indoleamine 2,3-dioxygenase gene and related human genes. Curr Drug Metab. 2007;8(3):197–200.

    Article  CAS  PubMed  Google Scholar 

  2. Miller CL, Llenos IC, Dulay JR, Barillo MM, Yolken RH, Weis S. Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis. 2004;15(3):618–29.

    Article  CAS  PubMed  Google Scholar 

  3. Han Q, Cai T, Tagle DA, Li J. Structure, expression, and function of kynurenine aminotransferases in human and rodent brains. Cell Mol Life Sci. 2010;67(3):353–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Stone TW, Perkins MN. Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur J Pharmacol. 1981;72(4):411–2.

    Article  CAS  PubMed  Google Scholar 

  5. Birch PJ, Grossman CJ, Hayes AG. Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. Eur J Pharmacol. 1988;154(1):85–7.

    Article  CAS  PubMed  Google Scholar 

  6. Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, Martin JB. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature. 1986;321(6066):168–71.

    Article  CAS  PubMed  Google Scholar 

  7. Prescott C, Weeks AM, Staley KJ, Partin KM. Kynurenic acid has a dual action on AMPA receptor responses. Neurosci Lett. 2006;402(1-2):108–12.

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem. 2006;281(31):22021–8.

    Article  CAS  PubMed  Google Scholar 

  9. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci. 2001;21(19):7463–73.

    CAS  PubMed  Google Scholar 

  10. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281(5380):1191–3.

    Article  CAS  PubMed  Google Scholar 

  11. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002;196(4):459–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Dinarello CA. Historical insights into cytokines. Eur J Immunol. 2007;37 Suppl 1:S34–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Dinarello CA. Proinflammatory cytokines. Chest. 2000;118(2):503–8.

    Article  CAS  PubMed  Google Scholar 

  14. Robinson CM, Hale PT, Carlin JM. The role of IFN-gamma and TNF-alpha-responsive regulatory elements in the synergistic induction of indoleamine dioxygenase. J Interferon Cytokine Res. 2005;25(1):20–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. O'Connor JC, Andre C, Wang Y, Lawson MA, Szegedi SS, Lestage J, et al. Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J Neurosci. 2009;29(13):4200–9.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Fujigaki H, Saito K, Fujigaki S, Takemura M, Sudo K, Ishiguro H, et al. The signal transducer and activator of transcription 1alpha and interferon regulatory factor 1 are not essential for the induction of indoleamine 2,3-dioxygenase by lipopolysaccharide: involvement of p38 mitogen-activated protein kinase and nuclear factor-kappaB pathways, and synergistic effect of several proinflammatory cytokines. J Biochem. 2006;139(4):655–62.

    Article  CAS  PubMed  Google Scholar 

  17. Musso T, Gusella GL, Brooks A, Longo DL, Varesio L. Interleukin-4 inhibits indoleamine 2,3-dioxygenase expression in human monocytes. Blood. 1994;83(5):1408–11.

    CAS  PubMed  Google Scholar 

  18. Yadav MC, Burudi EM, Alirezaei M, Flynn CC, Watry DD, Lanigan CM, et al. IFN-gamma-induced IDO and WRS expression in microglia is differentially regulated by IL-4. Glia. 2007;55(13):1385–96.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Chaves AC, Ceravolo IP, Gomes JA, Zani CL, Romanha AJ, Gazzinelli RT. IL-4 and IL-13 regulate the induction of indoleamine 2,3-dioxygenase activity and the control of Toxoplasma gondii replication in human fibroblasts activated with IFN-gamma. Eur J Immunol. 2001;31(2):333–44.

    Article  CAS  PubMed  Google Scholar 

  20. Belladonna ML, Orabona C, Grohmann U, Puccetti P. TGF-beta and kynurenines as the key to infectious tolerance. Trends Mol Med. 2009;15(2):41–9.

    Article  CAS  PubMed  Google Scholar 

  21. Ozaki Y, Edelstein MP, Duch DS. The actions of interferon and antiinflammatory agents of induction of indoleamine 2,3-dioxygenase in human peripheral blood monocytes. Biochem Biophys Res Commun. 1987;144(3):1147–53.

    Article  CAS  PubMed  Google Scholar 

  22. Turck J, Oberdorfer C, Vogel T, Mackenzie CR, Daubener W. Enhancement of antimicrobial effects by glucocorticoids. Med Microbiol Immunol. 2005;194(1-2):47–53.

    Article  PubMed  Google Scholar 

  23. Takikawa. In: SHe, editor. Progress in tryptophan and serotonin research. Berlin-NY: Walter de Gruyter and Co; 1984. p. 517–20.

    Google Scholar 

  24. Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP. Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J. 1996;320(Pt 2):595–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Rodriguez-Martinez E, Camacho A, Maldonado PD, Pedraza-Chaverri J, Santamaria D, Galvan-Arzate S, et al. Effect of quinolinic acid on endogenous antioxidants in rat corpus striatum. Brain Res. 2000;858(2):436–9.

    Article  CAS  PubMed  Google Scholar 

  26. Santamaria A, Galvan-Arzate S, Lisy V, Ali SF, Duhart HM, Osorio-Rico L, et al. Quinolinic acid induces oxidative stress in rat brain synaptosomes. Neuroreport. 2001;12(4):871–4.

    Article  CAS  PubMed  Google Scholar 

  27. Rios C, Santamaria A. Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochem Res. 1991;16(10):1139–43.

    Article  CAS  PubMed  Google Scholar 

  28. Okuda S, Nishiyama N, Saito H, Katsuki H. 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem. 1998;70(1):299–307.

    Article  CAS  PubMed  Google Scholar 

  29. Daley-Yates PT, Powell AP, Smith LL. Pulmonary indoleamine 2,3-dioxygenase activity and its significance in the response of rats, mice, and rabbits to oxidative stress. Toxicol Appl Pharmacol. 1988;96(2):222–32.

    Article  CAS  PubMed  Google Scholar 

  30. Hajat C, Heuschmann PU, Coshall C, Padayachee S, Chambers J, Rudd AG, et al. Incidence of aetiological subtypes of stroke in a multi-ethnic population based study: the South London Stroke Register. J Neurol Neurosurg Psychiatry. 2011;82(5):527–33.

    Article  PubMed  Google Scholar 

  31. Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology. 2008;55(3):310–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Zivin JA. Factors determining the therapeutic window for stroke. Neurology. 1998;50(3):599–603.

    Article  CAS  PubMed  Google Scholar 

  33. Brouns R, De Deyn PP. The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg. 2009;111(6):483–95.

    Article  CAS  PubMed  Google Scholar 

  34. McColl BW, Allan SM, Rothwell NJ. Systemic infection, inflammation and acute ischemic stroke. Neuroscience. 2009;158(3):1049–61.

    Article  CAS  PubMed  Google Scholar 

  35. Smith CJ, Lawrence CB, Rodriguez-Grande B, Kovacs KJ, Pradillo JM, Denes A. The immune system in stroke: clinical challenges and their translation to experimental research. J Neuroimmune Pharmacol. 2013;8(4):867–87.

    Article  PubMed  Google Scholar 

  36. Lambertsen KL, Biber K, Finsen B. Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab. 2012;32(9):1677–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol. 2007;184(1-2):53–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Brambilla R, Couch Y, Lambertsen KL. The effect of stroke on immune function. Mol Cell Neurosci. 2013;53:26–33.

    Article  CAS  PubMed  Google Scholar 

  39. Sairanen T, Carpen O, Karjalainen-Lindsberg ML, Paetau A, Turpeinen U, Kaste M, et al. Evolution of cerebral tumor necrosis factor-alpha production during human ischemic stroke. Stroke. 2001;32(8):1750–8.

    Article  CAS  PubMed  Google Scholar 

  40. Feuerstein GZ, Wang X, Barone FC. The role of cytokines in the neuropathology of stroke and neurotrauma. Neuroimmunomodulation. 1998;5(3-4):143–59.

    Article  CAS  PubMed  Google Scholar 

  41. Stoll G, Jander S, Schroeter M. Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol. 1998;56(2):149–71.

    Article  CAS  PubMed  Google Scholar 

  42. Kriz J, Lalancette-Hebert M. Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol. 2009;117(5):497–509.

    Article  CAS  PubMed  Google Scholar 

  43. Fassbender K, Rossol S, Kammer T, Daffertshofer M, Wirth S, Dollman M, et al. Proinflammatory cytokines in serum of patients with acute cerebral ischemia: kinetics of secretion and relation to the extent of brain damage and outcome of disease. J Neurol Sci. 1994;122(2):135–9.

    Article  CAS  PubMed  Google Scholar 

  44. Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm S, et al. Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke. 1995;26(8):1393–8.

    Article  CAS  PubMed  Google Scholar 

  45. Vila N, Castillo J, Davalos A, Chamorro A. Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke. 2000;31(10):2325–9.

    Article  CAS  PubMed  Google Scholar 

  46. Acalovschi D, Wiest T, Hartmann M, Farahmi M, Mansmann U, Auffarth GU, et al. Multiple levels of regulation of the interleukin-6 system in stroke. Stroke. 2003;34(8):1864–9.

    Article  CAS  PubMed  Google Scholar 

  47. Smith CJ, Emsley HC, Gavin CM, Georgiou RF, Vail A, Barberan EM, et al. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol. 2004;4:2.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Di Napoli M, Schwaninger M, Cappelli R, Ceccarelli E, Di Gianfilippo G, Donati C, et al. Evaluation of C-reactive protein measurement for assessing the risk and prognosis in ischemic stroke: a statement for health care professionals from the CRP Pooling Project members. Stroke. 2005;36(6):1316–29.

    Article  PubMed  Google Scholar 

  49. Smith CJ, Emsley HC, Vail A, Georgiou RF, Rothwell NJ, Tyrrell PJ, et al. Variability of the systemic acute phase response after ischemic stroke. J Neurol Sci. 2006;251(1-2):77–81.

    Article  CAS  PubMed  Google Scholar 

  50. Sotgiu S, Zanda B, Marchetti B, Fois ML, Arru G, Pes GM, et al. Inflammatory biomarkers in blood of patients with acute brain ischemia. Eur J Neurol. 2006;13(5):505–13.

    Article  CAS  PubMed  Google Scholar 

  51. Licata G, Tuttolomondo A, Di Raimondo D, Corrao S, Di Sciacca R, Pinto A. Immuno-inflammatory activation in acute cardio-embolic strokes in comparison with other subtypes of ischaemic stroke. Thromb Haemost. 2009;101(5):929–37.

    CAS  PubMed  Google Scholar 

  52. Ormstad H, Aass HC, Lund-Sorensen N, Amthor KF, Sandvik L. Serum levels of cytokines and C-reactive protein in acute ischemic stroke patients, and their relationship to stroke lateralization, type, and infarct volume. J Neurol. 2011;258(4):677–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Saito K, Nowak Jr TS, Markey SP, Heyes MP. Mechanism of delayed increases in kynurenine pathway metabolism in damaged brain regions following transient cerebral ischemia. J Neurochem. 1993;60(1):180–92.

    Article  CAS  PubMed  Google Scholar 

  54. Darlington LG, Mackay GM, Forrest CM, Stoy N, George C, Stone TW. Altered kynurenine metabolism correlates with infarct volume in stroke. Eur J Neurosci. 2007;26(8):2211–21.

    Article  CAS  PubMed  Google Scholar 

  55. Brouns R, Verkerk R, Aerts T, De Surgeloose D, Wauters A, Scharpe S, et al. The role of tryptophan catabolism along the kynurenine pathway in acute ischemic stroke. Neurochem Res. 2010;35(9):1315–22.

    Article  CAS  PubMed  Google Scholar 

  56. Mo X, Pi L, Yang J, Xiang Z, Tang A. Serum indoleamine 2,3-dioxygenase and kynurenine aminotransferase enzyme activity in patients with ischemic stroke. J Clin Neurosci. 2014;21(3):482–6.

    Article  CAS  PubMed  Google Scholar 

  57. Ormstad H, Verkerk R, Aass HC, Amthor KF, Sandvik L. Inflammation-induced catabolism of tryptophan and tyrosine in acute ischemic stroke. J Mol Neurosci. 2013;51(3):893–902.

    Article  CAS  PubMed  Google Scholar 

  58. Kwidzinski E, Bechmann I. IDO expression in the brain: a double-edged sword. J Mol Med (Berl). 2007;85(12):1351–9.

    Article  Google Scholar 

  59. Park SB, Coull JT, McShane RH, Young AH, Sahakian BJ, Robbins TW, et al. Tryptophan depletion in normal volunteers produces selective impairments in learning and memory. Neuropharmacology. 1994;33(3-4):575–88.

    Article  CAS  PubMed  Google Scholar 

  60. Riedel WJ, Klaassen T, Deutz NE, van Someren A, van Praag HM. Tryptophan depletion in normal volunteers produces selective impairment in memory consolidation. Psychopharmacology (Berl). 1999;141(4):362–9.

    Article  CAS  Google Scholar 

  61. Cowen PJ, Parry-Billings M, Newsholme EA. Decreased plasma tryptophan levels in major depression. J Affect Disord. 1989;16(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  62. Lucca A, Lucini V, Catalano M, Alfano M, Smeraldi E. Plasma tryptophan to large neutral amino acids ratio and therapeutic response to a selective serotonin uptake inhibitor. Neuropsychobiology. 1994;29(3):108–11.

    Article  CAS  PubMed  Google Scholar 

  63. Van der Does AJ. The effects of tryptophan depletion on mood and psychiatric symptoms. J Affect Disord. 2001;64(2-3):107–19.

    Article  PubMed  Google Scholar 

  64. Widner B, Leblhuber F, Walli J, Tilz GP, Demel U, Fuchs D. Tryptophan degradation and immune activation in Alzheimer's disease. J Neural Transm. 2000;107(3):343–53.

    Article  CAS  PubMed  Google Scholar 

  65. Gulaj E, Pawlak K, Bien B, Pawlak D. Kynurenine and its metabolites in Alzheimer's disease patients. Adv Med Sci. 2010;55(2):204–11.

    Article  CAS  PubMed  Google Scholar 

  66. Gold AB, Herrmann N, Swardfager W, Black SE, Aviv RI, Tennen G, et al. The relationship between indoleamine 2,3-dioxygenase activity and post-stroke cognitive impairment. J Neuroinflammation. 2011;8:17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Barker-Collo S, Feigin VL, Dudley M. Post stroke fatigue–where is the evidence to guide practice? N Z Med J. 2007;120(1264):U2780.

    PubMed  Google Scholar 

  68. Duncan F, Wu S, Mead GE. Frequency and natural history of fatigue after stroke: a systematic review of longitudinal studies. J Psychosom Res. 2012;73(1):18–27.

    Article  PubMed  Google Scholar 

  69. Ormstad H, Aass HC, Amthor KF, Lund-Sorensen N, Sandvik L. Serum cytokine and glucose levels as predictors of poststroke fatigue in acute ischemic stroke patients. J Neurol. 2011;258(4):670–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Ayerbe L, Ayis S, Wolfe CD, Rudd AG. Natural history, predictors and outcomes of depression after stroke: systematic review and meta-analysis. Br J Psychiatry. 2013;202(1):14–21.

    Article  PubMed  Google Scholar 

  71. Fang J, Cheng Q. Etiological mechanisms of post-stroke depression: a review. Neurol Res. 2009;31(9):904–9.

    Article  PubMed  Google Scholar 

  72. Spalletta G, Bossu P, Ciaramella A, Bria P, Caltagirone C, Robinson RG. The etiology of poststroke depression: a review of the literature and a new hypothesis involving inflammatory cytokines. Mol Psychiatry. 2006;11(11):984–91.

    Article  CAS  PubMed  Google Scholar 

  73. Ormstad H, Aass HC, Amthor KF, Lund-Sorensen N, Sandvik L. Serum levels of cytokines, glucose, and hemoglobin as possible predictors of poststroke depression, and association with poststroke fatigue. Int J Neurosci. 2012;122(11):682–90.

    Article  CAS  PubMed  Google Scholar 

  74. Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 2007;21(2):153–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Ronnback L, Hansson E. On the potential role of glutamate transport in mental fatigue. J Neuroinflammation. 2004;1(1):22.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Dantzer R. Cytokine, sickness behavior, and depression. Immunol Allergy Clin North Am. 2009;29(2):247–64.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Dantzer R, O'Connor JC, Lawson MA, Kelley KW. Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology. 2011;36(3):426–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Ormstad H, Verkerk R, Amthor KF, Sandvik L. Activation of the kynurenine pathway in the acute phase of stroke and its role in fatigue and depression following stroke. J Mol Neurosci. 2014;54(2):181–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Ormstad Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ormstad, H., Verkerk, R. (2015). Role of the Kynurenine Pathway in Stroke. In: Mittal, S. (eds) Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, Cham. https://doi.org/10.1007/978-3-319-11870-3_17

Download citation

Publish with us

Policies and ethics