Skip to main content

The Role of the Kynurenine Pathway in Neurodegenerative Diseases

  • Chapter
Book cover Targeting the Broadly Pathogenic Kynurenine Pathway

Abstract

The kynurenine pathway, the main metabolic route of tryptophan degradation, produces several neuroactive molecules. Alterations in the kynurenine pathway have been described in a number of neurological disorders; a feature of special importance is the elevation of neurotoxic metabolites, which may promote glutamate-mediated excitotoxic neuronal damage. The delicate balance between the neurotoxic and neuroprotective compounds participating in the kynurenine pathway has been suggested to play an important role in the regulation of glutamatergic neurotransmission and in inflammatory processes. Synthetic kynurenic acid derivatives and kynurenine-monooxygenase inhibitors have proved in several preclinical studies to have beneficial effects. The kynurenine pathway offers a promising target for future drug development with the aim of achieving neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-HANA:

3-Hydroxyanthranilic acid

3-OH-KYN:

3-Hydroxykynurenine

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

EAE:

Experimental autoimmune encephalomyelitis

Glu:

Glutamate

HD:

Huntington’s disease

IDO:

Indoleamine-2,3-dioxygenase

KAT:

Kynurenine aminotransferase

KMO:

Kynurenine monooxygenase

KP:

Kynurenine pathway

KYN:

Kynurenine

KYNA:

Kynurenic acid

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MS:

Multiple sclerosis

NMDA:

N-methyl-d-aspartate

PD:

Parkinson’s disease

QUIN:

Quinolinic acid

TDO:

Tryptophan-2,3-dioxygenase

Trp:

Tryptophan

References

  1. Szalardy L, Klivenyi P, Zadori D, Fulop F, Toldi J, Vecsei L. Mitochondrial disturbances, tryptophan metabolites and neurodegeneration: medicinal chemistry aspects. Curr Med Chem. 2012;19(13):1899–920.

    Article  CAS  PubMed  Google Scholar 

  2. Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev. 2012;2012:428010.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140(6):918–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 2010;460(2):525–42.

    Article  CAS  PubMed  Google Scholar 

  5. Novelli A, Reilly JA, Lysko PG, Henneberry RC. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 1988;451(1–2):205–12.

    Article  CAS  PubMed  Google Scholar 

  6. Beadle GW, Mitchell HK, Nyc JF. Kynurenine as an intermediate in the formation of nicotinic acid from tryptophane by neurospora. Proc Natl Acad Sci U S A. 1947;33(6):155–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Battie C, Verity MA. Presence of kynurenine hydroxylase in developing rat brain. J Neurochem. 1981;36(3):1308–10.

    Article  CAS  PubMed  Google Scholar 

  8. Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, et al. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem. 2001;78(4):842–53.

    Article  CAS  PubMed  Google Scholar 

  9. Espey MG, Chernyshev ON, Reinhard Jr JF, Namboodiri MA, Colton CA. Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport. 1997;8(2):431–4.

    Article  CAS  PubMed  Google Scholar 

  10. Lehrmann E, Molinari A, Speciale C, Schwarcz R. Immunohistochemical visualization of newly formed quinolinate in the normal and excitotoxically lesioned rat striatum. Exp Brain Res. 2001;141(3):389–97.

    Article  CAS  PubMed  Google Scholar 

  11. Zadori D, Klivenyi P, Plangar I, Toldi J, Vecsei L. Endogenous neuroprotection in chronic neurodegenerative disorders: with particular regard to the kynurenines. J Cell Mol Med. 2011;15(4):701–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Perkins MN, Stone TW. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res. 1982;247(1):184–7.

    Article  CAS  PubMed  Google Scholar 

  13. Stone TW. Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev. 1993;45(3):309–79.

    CAS  PubMed  Google Scholar 

  14. Kessler M, Terramani T, Lynch G, Baudry M. A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem. 1989;52(4):1319–28.

    Article  CAS  PubMed  Google Scholar 

  15. Prescott C, Weeks AM, Staley KJ, Partin KM. Kynurenic acid has a dual action on AMPA receptor responses. Neurosci Lett. 2006;402(1–2):108–12.

    Article  CAS  PubMed  Google Scholar 

  16. Rozsa E, Robotka H, Vecsei L, Toldi J. The Janus-face kynurenic acid. J Neural Transm. 2008;115(8):1087–91.

    Article  CAS  PubMed  Google Scholar 

  17. Birch PJ, Grossman CJ, Hayes AG. Kynurenate and FG9041 have both competitive and non-competitive antagonist actions at excitatory amino acid receptors. Eur J Pharmacol. 1988;151(2):313–15.

    Article  CAS  PubMed  Google Scholar 

  18. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci. 2001;21(19):7463–73.

    CAS  PubMed  Google Scholar 

  19. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, et al. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem. 2006;281(31):22021–8.

    Article  CAS  PubMed  Google Scholar 

  20. Berlinguer-Palmini R, Masi A, Narducci R, Cavone L, Maratea D, Cozzi A, et al. GPR35 activation reduces Ca2+ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses. PLoS One. 2013;8(11):e82180.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Marchi M, Risso F, Viola C, Cavazzani P, Raiteri M. Direct evidence that release-stimulating alpha7 nicotinic cholinergic receptors are localized on human and rat brain glutamatergic axon terminals. J Neurochem. 2002;80(6):1071–8.

    Article  CAS  PubMed  Google Scholar 

  22. de Carvalho LP, Bochet P, Rossier J. The endogenous agonist quinolinic acid and the non endogenous homoquinolinic acid discriminate between NMDAR2 receptor subunits. Neurochem Int. 1996;28(4):445–52.

    Article  PubMed  Google Scholar 

  23. Stone TW, Perkins MN. Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur J Pharmacol. 1981;72(4):411–12.

    Article  CAS  PubMed  Google Scholar 

  24. Vecsei L, Szalardy L, Fulop F, Toldi J. Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov. 2013;12(1):64–82.

    Article  CAS  PubMed  Google Scholar 

  25. Knyihar-Csillik E, Csillik B, Pakaski M, Krisztin-Peva B, Dobo E, Okuno E, et al. Decreased expression of kynurenine aminotransferase-I (KAT-I) in the substantia nigra of mice after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Neuroscience. 2004;126(4):899–914.

    Article  CAS  PubMed  Google Scholar 

  26. Knyihar-Csillik E, Chadaide Z, Mihaly A, Krisztin-Peva B, Fenyo R, Vecsei L. Effect of 6-hydroxydopamine treatment on kynurenine aminotransferase-I (KAT-I) immunoreactivity of neurons and glial cells in the rat substantia nigra. Acta Neuropathol. 2006;112(2):127–37.

    Article  CAS  PubMed  Google Scholar 

  27. Luchowski P, Luchowska E, Turski WA, Urbanska EM. 1-Methyl-4-phenylpyridinium and 3-nitropropionic acid diminish cortical synthesis of kynurenic acid via interference with kynurenine aminotransferases in rats. Neurosci Lett. 2002;330(1):49–52.

    Article  CAS  PubMed  Google Scholar 

  28. Hartai Z, Klivenyi P, Janaky T, Penke B, Dux L, Vecsei L. Kynurenine metabolism in plasma and in red blood cells in Parkinson’s disease. J Neurol Sci. 2005;239(1):31–5.

    Article  CAS  PubMed  Google Scholar 

  29. Widner B, Leblhuber F, Fuchs D. Increased neopterin production and tryptophan degradation in advanced Parkinson’s disease. J Neural Transm. 2002;109(2):181–9.

    Article  CAS  PubMed  Google Scholar 

  30. Molina JA, Jimenez-Jimenez FJ, Gomez P, Vargas C, Navarro JA, Orti-Pareja M, et al. Decreased cerebrospinal fluid levels of neutral and basic amino acids in patients with Parkinson’s disease. J Neurol Sci. 1997;150(2):123–7.

    Article  CAS  PubMed  Google Scholar 

  31. Ogawa T, Matson WR, Beal MF, Myers RH, Bird ED, Milbury P, et al. Kynurenine pathway abnormalities in Parkinson’s disease. Neurology. 1992;42(9):1702–6.

    Article  CAS  PubMed  Google Scholar 

  32. Lewitt PA, Li J, Lu M, Beach TG, Adler CH, Guo L. 3-hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Mov Disord. 2013;28(12):1653–60.

    Article  CAS  PubMed  Google Scholar 

  33. Poeggeler B, Rassoulpour A, Guidetti P, Wu HQ, Schwarcz R. Dopaminergic control of kynurenate levels and N-methyl-D-aspartate toxicity in the developing rat striatum. Dev Neurosci. 1998;20(2–3):146–53.

    Article  CAS  PubMed  Google Scholar 

  34. Wu HQ, Rassoulpour A, Schwarcz R. Effect of systemic L-DOPA administration on extracellular kynurenate levels in the rat striatum. J Neural Transm. 2002;109(3):239–49.

    Article  CAS  PubMed  Google Scholar 

  35. Rassoulpour A, Wu HQ, Ferre S, Schwarcz R. Nanomolar concentrations of kynurenic acid reduce extracellular dopamine levels in the striatum. J Neurochem. 2005;93(3):762–5.

    Article  CAS  PubMed  Google Scholar 

  36. Zadori D, Klivenyi P, Toldi J, Fulop F, Vecsei L. Kynurenines in Parkinson’s disease: therapeutic perspectives. J Neural Transm. 2012;119(2):275–83.

    Article  CAS  PubMed  Google Scholar 

  37. Anderson G, Maes M. TRYCAT pathways link peripheral inflammation, nicotine, somatization and depression in the etiology and course of Parkinson’s disease. CNS Neurol Disord Drug Targets. 2014;13(1):137–49.

    Article  CAS  PubMed  Google Scholar 

  38. Obal I, Majlath Z, Toldi J, Vecsei L. Mental disturbances in Parkinson’s disease and related disorders: the role of excitotoxins. J Parkinsons Dis. 2014;4(2):139–50.

    PubMed  Google Scholar 

  39. Popoli P, Pezzola A, Domenici MR, Sagratella S, Diana G, Caporali MG, et al. Behavioral and electrophysiological correlates of the quinolinic acid rat model of Huntington’s disease in rats. Brain Res Bull. 1994;35(4):329–35.

    Article  CAS  PubMed  Google Scholar 

  40. Beal MF, Ferrante RJ, Swartz KJ, Kowall NW. Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. J Neurosci. 1991;11(6):1649–59.

    CAS  PubMed  Google Scholar 

  41. Vecsei L, Beal MF. Comparative behavioral and neurochemical studies with striatal kainic acid- or quinolinic acid-lesioned rats. Pharmacol Biochem Behav. 1991;39(2):473–8.

    Article  CAS  PubMed  Google Scholar 

  42. Tatter SB, Galpern WR, Hoogeveen AT, Isacson O. Effects of striatal excitotoxicity on huntingtin-like immunoreactivity. Neuroreport. 1995;6(8):1125–9.

    Article  CAS  PubMed  Google Scholar 

  43. Giorgini F, Guidetti P, Nguyen Q, Bennett SC, Muchowski PJ. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet. 2005;37(5):526–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Campesan S, Green EW, Breda C, Sathyasaikumar KV, Muchowski PJ, Schwarcz R, et al. The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington’s disease. Curr Biol. 2011;21(11):961–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu HQ, et al. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell. 2011;145(6):863–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Pearson SJ, Reynolds GP. Increased brain concentrations of a neurotoxin, 3-hydroxykynurenine, in Huntington’s disease. Neurosci Lett. 1992;144(1–2):199–201.

    Article  CAS  PubMed  Google Scholar 

  47. Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R. Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis. 2004;17(3):455–61.

    Article  CAS  PubMed  Google Scholar 

  48. Beal MF, Matson WR, Swartz KJ, Gamache PH, Bird ED. Kynurenine pathway measurements in Huntington’s disease striatum: evidence for reduced formation of kynurenic acid. J Neurochem. 1990;55(4):1327–39.

    Article  CAS  PubMed  Google Scholar 

  49. Beal MF, Matson WR, Storey E, Milbury P, Ryan EA, Ogawa T, et al. Kynurenic acid concentrations are reduced in Huntington’s disease cerebral cortex. J Neurol Sci. 1992;108(1):80–7.

    Article  CAS  PubMed  Google Scholar 

  50. Stoy N, Mackay GM, Forrest CM, Christofides J, Egerton M, Stone TW, et al. Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J Neurochem. 2005;93(3):611–23.

    Article  CAS  PubMed  Google Scholar 

  51. Forrest CM, Mackay GM, Stoy N, Spiden SL, Taylor R, Stone TW, et al. Blood levels of kynurenines, interleukin-23 and soluble human leucocyte antigen-G at different stages of Huntington’s disease. J Neurochem. 2010;112(1):112–22.

    Article  CAS  PubMed  Google Scholar 

  52. Baran H, Jellinger K, Deecke L. Kynurenine metabolism in Alzheimer’s disease. J Neural Transm. 1999;106(2):165–81.

    Article  CAS  PubMed  Google Scholar 

  53. Widner B, Leblhuber F, Walli J, Tilz GP, Demel U, Fuchs D. Tryptophan degradation and immune activation in Alzheimer’s disease. J Neural Transm. 2000;107(3):343–53.

    Article  CAS  PubMed  Google Scholar 

  54. Majlath Z, Toldi J, Vecsei L. The potential role of kynurenines in Alzheimer’s disease: pathomechanism and therapeutic possibilities by influencing the glutamate receptors. J Neural Transm. 2014;121(8):881–9.

    Article  CAS  PubMed  Google Scholar 

  55. Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM. Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol Appl Neurobiol. 2005;31(4):395–404.

    Article  CAS  PubMed  Google Scholar 

  56. Rahman A, Ting K, Cullen KM, Braidy N, Brew BJ, Guillemin GJ. The excitotoxin quinolinic acid induces tau phosphorylation in human neurons. PLoS One. 2009;4(7):e6344.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Wu W, Nicolazzo JA, Wen L, Chung R, Stankovic R, Bao SS, et al. Expression of tryptophan 2,3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human Alzheimer’s disease brain. PLoS One. 2013;8(4):e59749.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Hartai Z, Juhasz A, Rimanoczy A, Janaky T, Donko T, Dux L, et al. Decreased serum and red blood cell kynurenic acid levels in Alzheimer’s disease. Neurochem Int. 2007;50(2):308–13.

    Article  CAS  PubMed  Google Scholar 

  59. Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain. 1992;115(Pt 5):1249–73.

    Article  PubMed  Google Scholar 

  60. Wennstrom M, Nielsen HM, Orhan F, Londos E, Minthon L, Erhardt S. Kynurenic Acid levels in cerebrospinal fluid from patients with Alzheimer’s disease or dementia with lewy bodies. Int J Tryptophan Res. 2014;7:1–7.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Steiner L, Gold M, Mengel D, Dodel R, Bach JP. The endogenous alpha7 nicotinic acetylcholine receptor antagonist kynurenic acid modulates amyloid-beta-induced inflammation in BV-2 microglial cells. J Neurol Sci. 2014;344(1–2):94–9.

    Article  CAS  PubMed  Google Scholar 

  62. Schwarz MJ, Guillemin GJ, Teipel SJ, Buerger K, Hampel H. Increased 3-hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls. Eur Arch Psychiatry Clin Neurosci. 2013;263(4):345–52.

    Article  PubMed  Google Scholar 

  63. Xiao BG, Liu X, Link H. Antigen-specific T cell functions are suppressed over the estrogen-dendritic cell-indoleamine 2,3-dioxygenase axis. Steroids. 2004;69(10):653–9.

    Article  CAS  PubMed  Google Scholar 

  64. Yan Y, Zhang GX, Gran B, Fallarino F, Yu S, Li H, et al. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol. 2010;185(10):5953–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Sakurai K, Zou JP, Tschetter JR, Ward JM, Shearer GM. Effect of indoleamine 2,3-dioxygenase on induction of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2002;129(1–2):186–96.

    Article  CAS  PubMed  Google Scholar 

  66. Kwidzinski E, Bunse J, Aktas O, Richter D, Mutlu L, Zipp F, et al. Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. FASEB J. 2005;19(10):1347–9.

    CAS  PubMed  Google Scholar 

  67. Amirkhani A, Rajda C, Arvidsson B, Bencsik K, Boda K, Seres E, et al. Interferon-beta affects the tryptophan metabolism in multiple sclerosis patients. Eur J Neurol. 2005;12(8):625–31.

    Article  CAS  PubMed  Google Scholar 

  68. Flanagan EM, Erickson JB, Viveros OH, Chang SY, Reinhard Jr JF. Neurotoxin quinolinic acid is selectively elevated in spinal cords of rats with experimental allergic encephalomyelitis. J Neurochem. 1995;64(3):1192–6.

    Article  CAS  PubMed  Google Scholar 

  69. Rejdak K, Bartosik-Psujek H, Dobosz B, Kocki T, Grieb P, Giovannoni G, et al. Decreased level of kynurenic acid in cerebrospinal fluid of relapsing-onset multiple sclerosis patients. Neurosci Lett. 2002;331(1):63–5.

    Article  CAS  PubMed  Google Scholar 

  70. Rejdak K, Petzold A, Kocki T, Kurzepa J, Grieb P, Turski WA, et al. Astrocytic activation in relation to inflammatory markers during clinical exacerbation of relapsing-remitting multiple sclerosis. J Neural Transm. 2007;114(8):1011–15.

    Article  CAS  PubMed  Google Scholar 

  71. Chen Y, Stankovic R, Cullen KM, Meininger V, Garner B, Coggan S, et al. The kynurenine pathway and inflammation in amyotrophic lateral sclerosis. Neurotox Res. 2010;18(2):132–42.

    Article  CAS  PubMed  Google Scholar 

  72. Ilzecka J, Kocki T, Stelmasiak Z, Turski WA. Endogenous protectant kynurenic acid in amyotrophic lateral sclerosis. Acta Neurol Scand. 2003;107(6):412–18.

    Article  CAS  PubMed  Google Scholar 

  73. Chen Y, Brew BJ, Guillemin GJ. Characterization of the kynurenine pathway in NSC-34 cell line: implications for amyotrophic lateral sclerosis. J Neurochem. 2011;118(5):816–25.

    Article  CAS  PubMed  Google Scholar 

  74. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR. Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem. 1991;56(6):2007–17.

    Article  CAS  PubMed  Google Scholar 

  75. Ceresoli G, Guidetti P, Schwarcz R. Metabolism of [5-(3)H]kynurenine in the developing rat brain in vivo: effect of intrastriatal ibotenate injections. Brain Res Dev Brain Res. 1997;100(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  76. Vecsei L, Miller J, MacGarvey U, Beal MF. Kynurenine and probenecid inhibit pentylenetetrazol- and NMDLA-induced seizures and increase kynurenic acid concentrations in the brain. Brain Res Bull. 1992;28(2):233–8.

    Article  CAS  PubMed  Google Scholar 

  77. Carrillo-Mora P, Mendez-Cuesta LA, Perez-De La Cruz V, Fortoul-van Der Goes TI, Santamaria A. Protective effect of systemic L-kynurenine and probenecid administration on behavioural and morphological alterations induced by toxic soluble amyloid beta (25-35) in rat hippocampus. Behav Brain Res. 2010;210(2):240–50.

    Article  CAS  PubMed  Google Scholar 

  78. Silva-Adaya D, Perez-De La Cruz V, Villeda-Hernandez J, Carrillo-Mora P, Gonzalez-Herrera IG, Garcia E, et al. Protective effect of L-kynurenine and probenecid on 6-hydroxydopamine-induced striatal toxicity in rats: implications of modulating kynurenate as a protective strategy. Neurotoxicol Teratol. 2011;33(2):303–12.

    Article  CAS  PubMed  Google Scholar 

  79. Acuna-Castroviejo D, Tapias V, Lopez LC, Doerrier C, Camacho E, Carrion MD, et al. Protective effects of synthetic kynurenines on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Brain Res Bull. 2011;85(3–4):133–40.

    Article  CAS  PubMed  Google Scholar 

  80. Zadori D, Nyiri G, Szonyi A, Szatmari I, Fulop F, Toldi J, et al. Neuroprotective effects of a novel kynurenic acid analogue in a transgenic mouse model of Huntington’s disease. J Neural Transm. 2011;118(6):865–75.

    Article  CAS  PubMed  Google Scholar 

  81. Gregoire L, Rassoulpour A, Guidetti P, Samadi P, Bedard PJ, Izzo E, et al. Prolonged kynurenine 3-hydroxylase inhibition reduces development of levodopa-induced dyskinesias in parkinsonian monkeys. Behav Brain Res. 2008;186(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  82. Ouattara B, Belkhir S, Morissette M, Dridi M, Samadi P, Gregoire L, et al. Implication of NMDA receptors in the antidyskinetic activity of cabergoline, CI-1041, and Ro 61-8048 in MPTP monkeys with levodopa-induced dyskinesias. J Mol Neurosci. 2009;38(2):128–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the project TÁMOP-4.2.2.A-11/1/KONV-2012-0052, the Hungarian Brain Research Program (NAP, Grant No. KTIA_13_NAP-A-III/9.), and the MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences and the University of Szeged. Thanks are due to David Durham from the UK for the linguistic corrections of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Vécsei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Majláth, Z., Toldi, J., Vécsei, L. (2015). The Role of the Kynurenine Pathway in Neurodegenerative Diseases. In: Mittal, S. (eds) Targeting the Broadly Pathogenic Kynurenine Pathway. Springer, Cham. https://doi.org/10.1007/978-3-319-11870-3_15

Download citation

Publish with us

Policies and ethics