Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8756))

Included in the following conference series:

Abstract

The gathering problem has been largely studied in the last years with respect to various basic graph topologies. The requirement is to move a team of robots initially placed at different vertices of the input graph towards a common vertex, and to let them remain at such a vertex. Robots move based on the so called Look-Compute-Move model. Each time a robot wakes-up, it perceives the current configuration in terms of occupied vertices (Look), it decides whether to move towards one of its neighbors (Compute), and in the positive case it makes the computed move instantaneously (Move). All the phases are performed asynchronously for each robot. So far, the goal has been mainly to detect the minimal assumptions that allow to accomplish the gathering task, without taking care of any cost measure of the provided solutions. In this paper, we are interested in devising optimal algorithms in terms of total number of moves the robots have to perform in order to finalize the gathering. In particular, we consider infinite grids as input graphs, and we fully characterize when optimal gathering is achievable by providing a distributed algorithm.

Work partially supported by the following Research Grants: 2010N5K7EB “PRIN 2010” ARS TechnoMedia (Algoritmica per le Reti Sociali Tecno-mediate) and 2012C4E3KT “PRIN 2012” Amanda (Algorithmics for MAssive and Networked DAta), both from the Italian Ministry of University and Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on anonymous grids and trees without multiplicity detection. Theor. Comput. Sci. (to appear)

    Google Scholar 

  2. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering on rings under the look-compute-move model. Distributed Computing 27(4), 255–285 (2014)

    Article  MathSciNet  Google Scholar 

  3. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering asynchronous and oblivious robots on basic graph topologies under the look-compute-move model. In: Search Theory: A Game Theoretic Perspective, pp. 197–222. Springer (2013)

    Google Scholar 

  4. Degener, B., Kempkes, B., Langner, T., Meyer, F.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: Proc. of the 23rd ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp. 139–148 (2011)

    Google Scholar 

  5. Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid exploration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Di Stefano, G., Navarra, A.: Optimal gathering of oblivious robots in anonymous graphs. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 213–224. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial cost. In: Proc. of the 32nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), pp. 92–99 (2013)

    Google Scholar 

  8. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool (2012)

    Google Scholar 

  9. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Randomized gathering of mobile robots with local-multiplicity detection. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 384–398. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: Gathering of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411, 3235–3246 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theor. Comput. Sci. 390, 27–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kupitz, Y., Martini, H.: Geometric aspects of the generalized Fermat-Torricelli problem. Intuitive Geometry, vol. 6. Bolyai Society Math Studies (1997)

    Google Scholar 

  14. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Di Stefano, G., Navarra, A. (2014). Optimal Gathering on Infinite Grids. In: Felber, P., Garg, V. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2014. Lecture Notes in Computer Science, vol 8756. Springer, Cham. https://doi.org/10.1007/978-3-319-11764-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11764-5_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11763-8

  • Online ISBN: 978-3-319-11764-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics