Advertisement

Structural Similarity-Based Approximation over Orthogonal Bases: Investigating the Use of Individual Component Functions \(S_k(\mathbf{x} ,\mathbf{y})\)

  • Paul Bendevis
  • Edward R. VrscayEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8814)

Abstract

We examine the use of individual components of the Structural Similarity image quality measure as criteria for best approximation in terms of orthogonal expansions. We also introduce a family of higher order SSIM-like rational functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brunet, D.: A Study of the Structural Similarity Image Quality Measure with Applications to Image Processing, Ph.D. Thesis, University of Waterloo (2010)Google Scholar
  2. 2.
    Brunet, D., Vrscay, E.R., Wang, Z.: On the mathematical properties of the structural similarity index. IEEE Trans. Image Proc. 21(4), 1488–1499 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brunet, D., Vrscay, E.R., Wang, Z.: Structural similarity-based approximation of signals and images using orthogonal bases. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6111, pp. 11–22. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  4. 4.
    Richter, T., Kim, K.J.: A MS-SSIM optimal JPEG 2000 encoder. In: Data Compression Conference, Snowbird, Utah, pp. 401–410 (March 2009)Google Scholar
  5. 5.
    Wainwright, M.J., Schwartz, O., Simoncelli, E.P.: Natural image statistics and divisive normalization: Modeling nonlinearity and adaptation in cortical neurons. In: Rao, R., Olshausen, B., Lewicki, M. (eds.) Probabilistic Models of the Brain: Perception and Neural Function, pp. 203–222. MIT Press (2002)Google Scholar
  6. 6.
    Wang, Z., Bovik, A.C.: Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Proc. Mag. 26(1), 98–117 (2009)CrossRefGoogle Scholar
  7. 7.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Proc. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  8. 8.
    Wandell, B.A.: Foundations of Vision. Sinauer Publishers, Sunderland (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Applied Mathematics, Faculty of MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations