Skip to main content

A New Compressor for Measuring Distances among Images

  • Conference paper
  • First Online:
Book cover Image Analysis and Recognition (ICIAR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8814))

Included in the following conference series:

  • 2144 Accesses

Abstract

Ideally, we would like to have a measure of similarity between images that did not require a feature selection and extraction step. In theory, this can be attained using Kolmogorov complexity concepts. In practice, because the Kolmogorov complexity of a digital object cannot be computed, one has to rely on appropriate approximations, the most successful being based on data compression. The application of these ideas to images has been more difficult than to some other areas. In this paper, we suggest a new distance and compare it with two others, showing some of their relative advantages and disadvantages, hoping to contribute to the advance of this promising line of research.

Funded in part by National Funds through FCT - Foundation for Science and Technology, in the context of the project PEst-OE/EEI/UI0127/2014.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gondra, I., Heisterkamp, D.R.: Content-based image retrieval with the normalized information distance. Computer Vision and Image Understanding 111, 219–228 (2008)

    Article  Google Scholar 

  2. Tran, N.: The normalized compression distance and image distinguishability. In: Human Vision and Electronic Imaging XII - Proc. of the SPIE, p. 64921D (January 2007)

    Google Scholar 

  3. Perkiö, J., Hyvärinen, A.: Modelling image complexity by independent component analysis, with application to content-based image retrieval. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part II. LNCS, vol. 5769, pp. 704–714. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Mortensen, J., Wu, J.J., Furst, J., Rogers, J., Raicu, D.: Effect of image linearization on normalized compression distance. In: Ślęzak, D., Pal, S.K., Kang, B.-H., Gu, J., Kuroda, H., Kim, T. (eds.) SIP 2009. CCIS, vol. 61, pp. 106–116. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Pinho, A.J., Ferreira, P.J.S.G.: Finding unknown repeated patterns in images. In: Proc. of the 19th European Signal Processing Conf., EUSIPCO 2011, Barcelona, Spain (August 2011)

    Google Scholar 

  6. Pinho, A.J., Ferreira, P.J.S.G.: Image similarity using the normalized compression distance based on finite context models. In: Proc. of the IEEE ICIP 2011, Brussels, Belgium (September 2011)

    Google Scholar 

  7. Cerra, D., Datcu, M.: A fast compression-based similarity measure with applications to content-based image retrieval. J. Vis. Commun. Image R. 23, 293–302 (2012)

    Article  Google Scholar 

  8. Besiris, D., Zigouris, E.: Dictionary-based color image retrieval using multiset theory. J. Vis. Commun. Image R. 24, 1155–1167 (2013)

    Article  Google Scholar 

  9. Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and Control 7(1), 1–22 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Solomonoff, R.J.: A formal theory of inductive inference. Part II. Information and Control 7(2), 224–254 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems of Information Transmission 1(1), 1–7 (1965)

    MathSciNet  Google Scholar 

  12. Chaitin, G.J.: On the length of programs for computing finite binary sequences. Journal of the ACM 13, 547–569 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wallace, C.S., Boulton, D.M.: An information measure for classification. The Computer Journal 11(2), 185–194 (1968)

    Article  MATH  Google Scholar 

  14. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  15. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. 42(2), 230–265 (1936)

    MathSciNet  Google Scholar 

  16. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications, 3rd edn. Springer (2008)

    Google Scholar 

  17. Bennett, C.H., Gács, P., Li, M., Vitányi, P.M.B., Zurek, W.H.: Information distance. IEEE Trans on Information Theory 44(4), 1407–1423 (1998)

    Article  MATH  Google Scholar 

  18. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. IEEE Trans. on Information Theory 50(12), 3250–3264 (2004)

    Article  Google Scholar 

  19. Cilibrasi, R., Vitányi, P.M.B.: Clustering by compression. IEEE Trans. on Information Theory 51(4), 1523–1545 (2005)

    Article  Google Scholar 

  20. Mallet, A., Gueguen, L., Datcu, M.: Complexity based image artifact detection. In: Proc. of the Data Compression Conf., Snowbird, Utah, p. 534 (2008)

    Google Scholar 

  21. Cebrián, M., Alfonseca, M., Ortega, A.: Common pitfalls using the normalized compression distance: what to watch out for in a compressor. Commun. in Information and Systems 5(4), 367–384 (2005)

    Article  MATH  Google Scholar 

  22. Nikvand, N., Wang, Z.: Generic image similarity based on Kolmogorov complexity. In: Proc. of the IEEE ICIP 2010, Hong Kong, pp. 309–312 (September 2010)

    Google Scholar 

  23. Nikvand, N., Wang, Z.: Image distortion analysis based on normalized perceptual information distance. Signal, Image and Video Processing 7, 403–410 (2013)

    Article  Google Scholar 

  24. Bell, T.C., Cleary, J.G., Witten, I.H.: Text compression. Prentice Hall (1990)

    Google Scholar 

  25. Pinho, A.J., Pratas, D., Ferreira, P.J.S.G.: Bacteria DNA sequence compression using a mixture of finite-context models. In: Proc. of the IEEE Workshop on Statistical Signal Processing, Nice, France (June 2011)

    Google Scholar 

  26. Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification. In: 2nd IEEE Workshop on Applications of Computer Vision, Sarasota, Florida, pp. 138–142 (December 1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando J. Pinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Pinho, A.J., Pratas, D., Ferreira, P.J.S.G. (2014). A New Compressor for Measuring Distances among Images. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2014. Lecture Notes in Computer Science(), vol 8814. Springer, Cham. https://doi.org/10.1007/978-3-319-11758-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11758-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11757-7

  • Online ISBN: 978-3-319-11758-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics