Advertisement

Reflectance-Based Segmentation Using Photometric and Illumination Invariants

  • Jose-Antonio Pérez-CarrascoEmail author
  • Begoña Acha-Piñero
  • Carmen Serrano-Gotarredona
  • Theo Gevers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8814)

Abstract

In this paper we propose a three-stage algorithm to implement effective segmentation of an object’s counterparts when illumination variance is present. A color constancy algorithm and color-based invariant parameters insensitive to a large set of different illumination conditions are used. Then reflectance images are considered after discarding the shadowing information present in the images. A color-based segmentation algorithm using Graph Cuts is applied to the reflectance images. Improvements in the segmentation are obtained after using these illumination invariants.

Keywords

Color-invariants Graph cuts Reflectance Intrinsic images 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gevers, T., Smeulders, A.: Color based object recognition. Pattern Recognition 32, 453–464 (1997)CrossRefGoogle Scholar
  2. 2.
    Gijsenij, A., Gevers, T.: Color constancy using natural image statistics and scene semantics. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(4), 687–698 (2011)CrossRefGoogle Scholar
  3. 3.
    van de Weijer, J., Gevers, T., Geusebroek, J.M.: Edge and corner detection by photometric quasi-invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(4), 625–630 (2005)CrossRefGoogle Scholar
  4. 4.
    Grosse, R., Johnson, M.K., et al.: Ground truth dataset and baseline evaluations for intrinsic image algorithms. In: IEEE International Conference on Computer Vision, pp. 2335–2342 (2009)Google Scholar
  5. 5.
    Weiss, Y.: Deriving intrinsic images from image sequences. In: IEEE International Conference on Computer Vision, vol. 2(1), p. 68 (2001)Google Scholar
  6. 6.
    Boykov, Y., et al.: Efficient approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(12), 1222–1239 (2001)CrossRefGoogle Scholar
  7. 7.
    Bagon, S: Matlab wrapper for graph cut (December 2006)Google Scholar
  8. 8.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)CrossRefGoogle Scholar
  9. 9.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  10. 10.
    Mark Geusebroek, J., et al.: The amsterdam library of object images. Int. J. Comput. Vision 61, 103–112 (2005)CrossRefGoogle Scholar
  11. 11.
    Kirkpatrick, S., et al.: Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jose-Antonio Pérez-Carrasco
    • 1
    Email author
  • Begoña Acha-Piñero
    • 1
  • Carmen Serrano-Gotarredona
    • 1
  • Theo Gevers
    • 2
  1. 1.Signal and Communications DepartmentUniversity of SevilleSevillaSpain
  2. 2.Faculty of ScienceAmsterdam University Informatics InstituteAmsterdamThe Netherlands

Personalised recommendations