Advertisement

A Method to Detect Repeated Unknown Patterns in an Image

  • Paulo J. S. G. Ferreira
  • Armando J. PinhoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8814)

Abstract

Consider a natural image that has been manipulated by copying, transforming and pasting back fragments of the image itself. Our goal is to detect such manipulations in the absence of any knowledge about the content of the repeated fragments or the transformations to which they might have been subject. The problem is non-trivial even in the absence of any transformations. For example, copy/paste of a textured fragment of a background can be difficult to detect even by visual inspection. Our approach to the problem is a two-step procedure. The first step consists in extracting features from the image. The second step explores the connection between image compression and complexity: a finite-context model is used to build a complexity map of the image features. Patterns that reappear, even in a somewhat modified form, are encoded with fewer bits, a fact that renders the detection of the repeated regions possible.

Keywords

Tampering detection Finite-context models Kolmogorov complexity SIFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  2. 2.
    Otero, I.R., Delbracio, M.: The anatomy of the SIFT method. Image Processing On Line (2012), http://demo.ipo.im/demo/82
  3. 3.
    Pinho, A.J., Ferreira, P.J.S.G.: Finding unknown repeated patterns in images. In: EUSIPCO 2011, Barcelona, Spain, pp. 584–588 (2011)Google Scholar
  4. 4.
    Pratas, D., Pinho, A.J.: On the detection of unknown locally repeating patterns in images. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012, Part I. LNCS, vol. 7324, pp. 158–165. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  5. 5.
    Curtin, R.R., Cline, J.R., Slagle, N.P., March, W.B., Ram, P., Mehta, N.A., Gray, A.G.: MLPACK: A scalable C++ machine learning library. J. of Machine Learning Research 14, 801–805 (2013)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Pinho, A.J., Pratas, D., Ferreira, P.J.S.G.: Bacteria DNA sequence compression using a mixture of finite-context models. In: IEEE SSP 2011, Nice, France, pp. 125–128 (2011)Google Scholar
  7. 7.
    Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and Control 7(1), 1–22 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Solomonoff, R.J.: A formal theory of inductive inference. Part II. Information and Control 7(2), 224–254 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems of Information Transmission 1(1), 1–7 (1965)MathSciNetGoogle Scholar
  10. 10.
    Chaitin, G.J.: On the length of programs for computing finite binary sequences. Journal of the ACM 13, 547–569 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wallace, C.S., Boulton, D.M.: An information measure for classification. The Computer Journal 11(2), 185–194 (1968)CrossRefzbMATHGoogle Scholar
  12. 12.
    Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. on Inf. Theory 22(1), 75–81 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gordon, G.: Multi-dimensional linguistic complexity. Journal of Biomolecular Structure & Dynamics 20(6), 747–750 (2003)CrossRefGoogle Scholar
  15. 15.
    Dix, T.I., Powell, D.R., Allison, L., Bernal, J., Jaeger, S., Stern, L.: Comparative analysis of long DNA sequences by per element information content using different contexts. BMC Bioinformatics 8(Suppl. 2), S10 (2007)CrossRefGoogle Scholar
  16. 16.
    Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The similarity metric. IEEE Trans. on Inf. Theory 50(12), 3250–3264 (2004)CrossRefGoogle Scholar
  17. 17.
    Bennett, C.H., Gács, P., Li, M., Vitányi, P.M.B., Zurek, W.H.: Information distance. IEEE Trans. on Inf. Theory 44(4), 1407–1423 (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Cilibrasi, R., Vitányi, P.M.B.: Clustering by compression. IEEE Trans. on Inf. Theory 51(4), 1523–1545 (2005)CrossRefGoogle Scholar
  19. 19.
    Tran, N.: The normalized compression distance and image distinguishability. In: Human Vision and Electronic Imaging XII - Proc. of SPIE, p. 64921D (January 2007)Google Scholar
  20. 20.
    Mallet, A., Gueguen, L., Datcu, M.: Complexity based image artifact detection. In: DCC 2008, Snowbird, Utah, p. 534 (2008)Google Scholar
  21. 21.
    Gondra, I., Heisterkamp, D.R.: Content-based image retrieval with the normalized information distance. Computer Vision and Image Understanding 111, 219–228 (2008)CrossRefGoogle Scholar
  22. 22.
    Pinho, A.J., Neves, A.J.R.: Lossy-to-lossless compression of images based on binary tree decomposition. In: IEEE ICIP 2006, Atlanta, GA, pp. 2257–2260 (2006)Google Scholar
  23. 23.
    Pinho, A.J., Neves, A.J.R.: L-infinity progressive image compression. In: PCS 2007, Lisbon, Portugal (2007)Google Scholar
  24. 24.
    Pinho, A.J., Neves, A.J.R.: Progressive lossless compression of medical images. In: IEEE ICASSP 2009, Taipei, Taiwan (2009)Google Scholar
  25. 25.
    Neves, A.J.R., Pinho, A.J.: Lossless compression of microarray images using image-dependent finite-context models. IEEE Trans. on Medical Imaging 28(2), 194–201 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.IEETA/DETIUniversidade de AveiroAveiroPortugal

Personalised recommendations