An Evaluation of Potential Functions for Regularized Image Deblurring

  • Buda BajićEmail author
  • Joakim Lindblad
  • Nataša Sladoje
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8814)


We explore utilization of seven different potential functions in restoration of images degraded by both noise and blur. Spectral Projected Gradient method confirms its excellent performance in terms of speed and flexibility for optimization of complex energy functions. Results obtained on images affected by different levels of Gaussian noise and different sizes of the Point Spread Functions, are presented. The Huber potential function demonstrates outstanding performance.


Potential Function Point Spread Function Image Denoising Degraded Image Total Variation Regularization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birgin, E., Martinez, J., Raydan, M.: Algorithm: 813: SPG - software for convex-constrained optimization. ACM. Trans. Mathematical Software 27, 340–349 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for constrained image deblurring. Inverse Problems 25, 015002 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Process. 6(2), 298–311 (1997)CrossRefGoogle Scholar
  4. 4.
    Geman, S., McClure, D.: Bayesian image analysis: an application to single photon emission tomography. In: Proc. Statistical Computation Section, pp. 12–18. Am. Statistical Assoc., Washington, DC (1985)Google Scholar
  5. 5.
    Getreuer, P.: Total variation deconvolution using Split Bregman. Image Processing On Line 2, 158–174 (2012)CrossRefGoogle Scholar
  6. 6.
    Hansen, P.C., Kilmer, M.E., Kjeldsen, R.H.: Exploiting residual information in the parameter choice for discrete ill-posed problems. BIT Numerical Mathematics 46(1), 41–59 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    He, C., Hu, C., Zhang, W., Shi, B., Hu, X.: Fast total variation image deconvolution with adaptive parameter estimation via Split Bregman method. Mathematical Problems in Engineering 2014, Article ID 617026 (2014)Google Scholar
  8. 8.
    Hebert, T., Leahy, R.: A generalized EM algorithm for 3D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Trans. Med. Imaging 8, 194–202 (1989)CrossRefGoogle Scholar
  9. 9.
    Lukić, T., Lindblad, J., Sladoje, N.: Regularized image denoising based on spectral gradient optimization. Inverse Problems 27, 085010 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nikolova, M., Chan, R.: The equivalence of half-quadratic minimization and the gradient linearization iteration. IEEE Trans. Image Process. 16, 1623–1627 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nikolova, M., Ng, M.: Analysis of half-quadratic minimization methods for signal and image recovery. SIAM J. Sci. Comput. 27, 937–966 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 345–362 (1990)CrossRefGoogle Scholar
  13. 13.
    Ramani, S., Blu, T., Unser, M.: Monte-Carlo SURE: A black-box optimization of regularization parameters for general denoising algorithms. IEEE Trans. Image Processing 17(9), 1540–1554 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rodriguez, P., Wohlberg, B.: Efficient minimization method for generalized total variation functional. IEEE Trans. Image Processing 18(2), 322–332 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)CrossRefzbMATHGoogle Scholar
  16. 16.
    Tikhonov, A., Arsenin, V.: Solutions of ill-posed problems. Winston and Wiley, Washington, DC (1977)zbMATHGoogle Scholar
  17. 17.
    Schultz, R., Stevenson, R.: Stochastic modeling and estimation of multispectral image data. IEEE Trans. Image Process. 4, 1109–1119 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Buda Bajić
    • 1
    Email author
  • Joakim Lindblad
    • 1
  • Nataša Sladoje
    • 1
    • 2
  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Centre for Image AnalysisUppsala UniversityUppsalaSweden

Personalised recommendations