Skip to main content

An Evaluation of Potential Functions for Regularized Image Deblurring

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8814))

Included in the following conference series:

Abstract

We explore utilization of seven different potential functions in restoration of images degraded by both noise and blur. Spectral Projected Gradient method confirms its excellent performance in terms of speed and flexibility for optimization of complex energy functions. Results obtained on images affected by different levels of Gaussian noise and different sizes of the Point Spread Functions, are presented. The Huber potential function demonstrates outstanding performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birgin, E., Martinez, J., Raydan, M.: Algorithm: 813: SPG - software for convex-constrained optimization. ACM. Trans. Mathematical Software 27, 340–349 (2001)

    Article  MATH  Google Scholar 

  2. Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for constrained image deblurring. Inverse Problems 25, 015002 (2009)

    Article  MathSciNet  Google Scholar 

  3. Charbonnier, P., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Process. 6(2), 298–311 (1997)

    Article  Google Scholar 

  4. Geman, S., McClure, D.: Bayesian image analysis: an application to single photon emission tomography. In: Proc. Statistical Computation Section, pp. 12–18. Am. Statistical Assoc., Washington, DC (1985)

    Google Scholar 

  5. Getreuer, P.: Total variation deconvolution using Split Bregman. Image Processing On Line 2, 158–174 (2012)

    Article  Google Scholar 

  6. Hansen, P.C., Kilmer, M.E., Kjeldsen, R.H.: Exploiting residual information in the parameter choice for discrete ill-posed problems. BIT Numerical Mathematics 46(1), 41–59 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. He, C., Hu, C., Zhang, W., Shi, B., Hu, X.: Fast total variation image deconvolution with adaptive parameter estimation via Split Bregman method. Mathematical Problems in Engineering 2014, Article ID 617026 (2014)

    Google Scholar 

  8. Hebert, T., Leahy, R.: A generalized EM algorithm for 3D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Trans. Med. Imaging 8, 194–202 (1989)

    Article  Google Scholar 

  9. Lukić, T., Lindblad, J., Sladoje, N.: Regularized image denoising based on spectral gradient optimization. Inverse Problems 27, 085010 (2011)

    Article  MathSciNet  Google Scholar 

  10. Nikolova, M., Chan, R.: The equivalence of half-quadratic minimization and the gradient linearization iteration. IEEE Trans. Image Process. 16, 1623–1627 (2007)

    Article  MathSciNet  Google Scholar 

  11. Nikolova, M., Ng, M.: Analysis of half-quadratic minimization methods for signal and image recovery. SIAM J. Sci. Comput. 27, 937–966 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 345–362 (1990)

    Article  Google Scholar 

  13. Ramani, S., Blu, T., Unser, M.: Monte-Carlo SURE: A black-box optimization of regularization parameters for general denoising algorithms. IEEE Trans. Image Processing 17(9), 1540–1554 (2008)

    Article  MathSciNet  Google Scholar 

  14. Rodriguez, P., Wohlberg, B.: Efficient minimization method for generalized total variation functional. IEEE Trans. Image Processing 18(2), 322–332 (2009)

    Article  MathSciNet  Google Scholar 

  15. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  16. Tikhonov, A., Arsenin, V.: Solutions of ill-posed problems. Winston and Wiley, Washington, DC (1977)

    MATH  Google Scholar 

  17. Schultz, R., Stevenson, R.: Stochastic modeling and estimation of multispectral image data. IEEE Trans. Image Process. 4, 1109–1119 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buda Bajić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bajić, B., Lindblad, J., Sladoje, N. (2014). An Evaluation of Potential Functions for Regularized Image Deblurring. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2014. Lecture Notes in Computer Science(), vol 8814. Springer, Cham. https://doi.org/10.1007/978-3-319-11758-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11758-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11757-7

  • Online ISBN: 978-3-319-11758-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics