Skip to main content

An Examination of Several Methods of Hyperspectral Image Denoising: Over Channels, Spectral Functions and Both Domains

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8814))

Included in the following conference series:

  • 2144 Accesses

Abstract

The corruption of hyperspectral images by noise can compromise tasks such as classification, target detection and material mapping. For this reason, many methods have been proposed to recover, as best as possible, the uncorrupted hyperspectral data from a given noisy observation. In this paper, we propose and compare the results of four denoising methods which differ in the way the hyperspectral data is treated: (i) as 3D data sets, (ii) as collections of frequency bands and (iii) as collections of spectral functions. In the case of additive noise, these methods can be easily adapted to accommodate different degradation models. Our methods and results help to address the question of how hyperspectral data sets should be processed in order to obtain useful denoising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AVIRIS website: http://aviris.jpl.nasa.gov/index.html

  2. Amir Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences Archive 2(1), 183–202 (2009)

    Article  MATH  Google Scholar 

  3. Bioucas-Dias, J.M., Nascimento, J.M.P.: Hyperspectral Subspace Identification. IEEE Trans. Geoscience and Remote Sensing 46, 2435–2445 (2008)

    Article  Google Scholar 

  4. Boyd, S.P., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and Trends in Machine Learning 3, 1–122 (2011)

    Article  Google Scholar 

  5. Bresson, X., Chan, T.: Fast Dual Minimization of the Vectorial Total Variation Norm and Applications to Color Image Processing. Inverse Problems and Imaging 2(4), 455–484 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chambolle, A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  7. Chan, T., Shen, J.: Image Processing and Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    Book  MATH  Google Scholar 

  8. Chang, Y., Yan, L., Fang, H., Liu, H.: Simultaneous Destriping and Denoising for Remote Sensing Images With Unidirectional Total Variation and Sparse Representation. IEEE Geoscience and Remote Sensing Letters 11(6), 1051–1055 (2014)

    Article  Google Scholar 

  9. Chen, G., Qian, S.E.: Denoising of Hyperspectral Imagery Using Principal Component Analysis and Wavelet Shrinkage. IEEE Trans. Geoscience and Remote Sensing 49, 973–980 (2011)

    Article  Google Scholar 

  10. Donoho, D.: Denoising by Soft-Thresholding. IEEE Trans. Information Theory 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Donoho, D., Johnstone, I.M.: Adapting to Unknown Smoothness Via Wavelet Shrinkage. J. of the Amer. Stat. Assoc. 90(432), 1220–1224 (1995)

    Article  MathSciNet  Google Scholar 

  12. Donoho, D., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Wavelet shrinkage: asymptopia. Journal of the Royal Statistical Society, Ser. B, 371–394 (1995)

    Google Scholar 

  13. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Proc. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  14. Goldlücke, B., Strekalovskiy, E., Cremers, D.: The Natural Vectorial Total Variation Which Arises from Geometric Measure Theory. SIAM J. Imaging Sciences 5, 537–563 (2012)

    Article  MATH  Google Scholar 

  15. Goldstein, T., Osher, S.: The Split Bregman Method for \(\ell _1\)-Regularized Problems. SIAM J. Imaging Sciences 2, 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

  17. Mairal, J., Bach, F., Jenatton, R., Obozinski, G.: Convex Optimization with Sparsity-Inducing Norms. Optimization for Machine Learning. MIT Press (2011)

    Google Scholar 

  18. Martín-Herrero, J.: Anisotropic Diffusion in the Hypercube. IEEE Trans. Geoscience and Remote Sensing 45, 1386–1398 (2007)

    Article  Google Scholar 

  19. Othman, H., Qian, S.E.: Noise Reduction of Hyperspectral Imagery Using Hybrid Spatial-Spectral Derivative-Domain Wavelet Shrinkage. IEEE Trans. Geoscience and Remote Sensing 44, 397–408 (2006)

    Article  Google Scholar 

  20. Renard, N., Bourennane, S., Blanc-Talon, J.: Denoising and Dimensionality Reduction Using Multilinear Tools for Hyperspectral Images. IEEE Geoscience and Remote Sensing Letters 5(2), 138–142 (2008)

    Article  Google Scholar 

  21. Rasti, B., Sveinsson, J.R., Ulfarsson, M.O., Benediktsson, J.A.: Hyperspectral image denoising using 3D wavelets. In: 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1349–1352 (2012)

    Google Scholar 

  22. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  23. Shippert, P.: Why use Hyperspectral imaging? Photogrammetric Engineering and Remote Sensing, 377–380 (2004)

    Google Scholar 

  24. Turlach, B.A.: On algorithms for solving least squares problems under an \(\ell _1\) penalty or an \(\ell _1\) constraint. In: Proceedings of the American Statistical Association, Statistical Computing Section, pp. 2572–2577 (2005)

    Google Scholar 

  25. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment: from Error Visibility to Structural Similarity. IEEE Trans. Image Processing 13, 600–612 (2004)

    Article  Google Scholar 

  26. Yuan, Q., Zhang, L., Shen, H.: Hyperspectral Image Denoising Employing a Spectral-Spatial Adaptive Total Variation Model. IEEE Trans. Geoscience and Remote Sensing 50, 3660–3677 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Otero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Otero, D., Michailovich, O.V., Vrscay, E.R. (2014). An Examination of Several Methods of Hyperspectral Image Denoising: Over Channels, Spectral Functions and Both Domains. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2014. Lecture Notes in Computer Science(), vol 8814. Springer, Cham. https://doi.org/10.1007/978-3-319-11758-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11758-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11757-7

  • Online ISBN: 978-3-319-11758-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics