Noise Modelling in Parallel Magnetic Resonance Imaging: A Variational Approach

  • Adrián MartínEmail author
  • Emanuele Schiavi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8814)


We proposed a new variational model for parallel Magnetic Resonance Imaging (MRI) processing including denoising, deblurring and super-resolution. In the context of Maximum A Posteriori (MAP) estimation it takes into account the non-central \(\chi \) (nc-\(\chi \)) distribution of the noise in parallel magnitude magnetic resonance (MR) images. This leads to the resolution of an energy minimization problem. In this Bayesian modelling framework the Total Generalized Variation (TGV) is proposed as the regularization term. A primal-dual algorithm is then implemented to solve numerically the presented model. The effectiveness of our approach is shown through a successful comparison of its performance to previous TGV methods for MRI denoising based on Gaussian noise.


Central Slice Total Generalize Variation Magnetic Resonance Image Group Fast Magnetic Resonance Image Parallel Magnetic Resonance Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roemer, P.B., Edelstein, W.A., Hayes, C.E., Souza, S.P., Mueller, O.M.: The NMR phased array. Magnetic Resonance in Medicine 16(2), 192–225 (1990)CrossRefGoogle Scholar
  2. 2.
    Sodickson, D.K., Manning, W.J.: Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays. Magnetic Resonance in Medicine 38(4), 591–603 (1997)CrossRefGoogle Scholar
  3. 3.
    Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magnetic Resonance in Medicine 42(5), 952–952 (1999)CrossRefGoogle Scholar
  4. 4.
    Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine 47(6), 1202–1210 (2002)CrossRefGoogle Scholar
  5. 5.
    Blaimer, M., Breuer, F., Mueller, M., Heidemann, R.M., Griswold, M.A., Jakob, P.M.: Smash, sense, pils, grappa. Topics in Magnetic Resonance Imaging 15(4), 223–236 (2004)CrossRefGoogle Scholar
  6. 6.
    Constantinides, C.D., Atalar, E.: Signal-to-Noise Measurements in Magnitude Images from NMR Phased Arrays. Magnetic Resonance in Medicine 38(5), 852–857 (2008)CrossRefGoogle Scholar
  7. 7.
    Dietrich, O., Raya, J.G., Reeder, S.B., Ingrisch, M., Reiser, M.F., Schoenberg, S.O.: Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. Magnetic Resonance Imaging 26(6), 754–762 (2008)CrossRefGoogle Scholar
  8. 8.
    Aja-Fernández, S., Tristán-Vega, A., Alberola-López, C.: Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models. Magnetic Resonance Imaging 27(10), 1397–1409 (2009)CrossRefGoogle Scholar
  9. 9.
    Aja-Fernández, S., Tristán-Vega, A., Hoge, W.S.: Statistical noise analysis in GRAPPA using a parametrized noncentral Chi approximation model. Magnetic Resonance in Medicine 65(4), 1195–1206 (2011)CrossRefGoogle Scholar
  10. 10.
    Aja-Fernández, S., Brion, V., Tristán-Vega, A.: Effective noise estimation and filtering from correlated multiple-coil MR data. Magnetic Resonance Imaging (October 2012)Google Scholar
  11. 11.
    Aja-Fernández, S., Vegas-Sánchez-Ferrero, G., Tristán-Vega, A.: Noise estimation in parallel MRI: GRAPPA and SENSE. Magnetic Resonance Imaging 32(3), 281–290 (2014)CrossRefGoogle Scholar
  12. 12.
    Brion, V., Poupon, C., Riff, O., Aja-Fernández, S., Tristán-Vega, A., Mangin, J.-F., Le Bihan, D., Poupon, F.: Parallel MRI noise correction: an extension of the LMMSE to non central \(\chi \) distributions. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 226–233. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  13. 13.
    Rajan, J., Veraart, J., Van Audekerke, J., Verhoye, M., Sijbers, J.: Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images. Magnetic Resonance Imaging (July 2012)Google Scholar
  14. 14.
    Bredies, K., Kunisch, K., Pock, T.: Total Generalized Variation. SIAM Journal on Imaging Sciences 3(3), 492–526 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Knoll, F., Bredies, K., Stollberger, R., Pock, T.: Second Order Total Generalized Variation (TGV) for MRI. Magnetic Resonance in Medicine 65(2), 480–491 (2011)CrossRefGoogle Scholar
  16. 16.
    Valkonen, T., Bredies, K., Knoll, F.: Total Generalized Variation in Diffusion Tensor Imaging. SIAM Journal on Imaging Sciences 6(1), 487–525 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Martín, A., Schiavi, E.: Automatic Total Generalized Variation-Based DTI Rician Denoising. In: Kamel, M., Campilho, A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 581–588. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  18. 18.
    Chan, T.F., Shen, J.: Image Processing and Analysis: variational, PDE, wavelet, and stochastic methods. Society for Industrial and Applied Mathematics (2005)Google Scholar
  19. 19.
    Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer (2009)Google Scholar
  20. 20.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Applied Mathematics DepartmentUniversidad Rey Juan CarlosMóstoles, MadridSpain
  2. 2.Magnetic Resonance Imaging Group, RLE-EECSMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations