Advertisement

Path Descriptors for Geometric Graph Matching and Registration

  • Miguel Amável PinheiroEmail author
  • Jan Kybic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8814)

Abstract

Graph and tree-like structures such as blood vessels and neuronal networks are abundant in medical imaging. We present a method to calculate path descriptors in geometrical graphs, so that the similarity between paths in the graphs can be determined efficiently. We show experimentally that our descriptors are more discriminative than existing alternatives. We further describe how to match two geometric graphs using our path descriptors. Our main application is registering images for which standard techniques are inefficient, because the appearance of the images is too different, or there is not enough texture and no uniquely identifiable keypoints to be found. We show that our approach can register these images with better accuracy than previous methods.

Keywords

Image Registration Machine Intelligence Graph Match Geometric Graph True Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Türetken, E., Benmansour, F., Fua, P.: Automated reconstruction of tree structures using path classifiers and mixed integer programming. In: IEEE ICCV, pp. 566–573 (2012)Google Scholar
  2. 2.
    Zitová, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21, 977–1000 (2003)CrossRefGoogle Scholar
  3. 3.
    Can, A., Stewart, C.V., Roysam, B., Tanenbaum, H.L.: A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 347–364 (2002)CrossRefGoogle Scholar
  4. 4.
    Serradell, E., Głowacki, P., Kybic, J., Moreno-Noguer, F., Fua, P.: Robust non-rigid registration of 2D and 3D graphs. In: IEEE CVPR, pp. 996–1003 (2012)Google Scholar
  5. 5.
    Pinheiro, M.A., Sznitman, R., Serradell, E., Kybic, J., Moreno-Noguer, F., Fua, P.: Active testing search for point cloud matching. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 572–583. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Torr, P.H.S., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding 78, 138–156 (2000)CrossRefGoogle Scholar
  7. 7.
    Chum, O., Matas, J.: Matching with PROSAC - progressive sample consensus. In: IEEE CVPR, pp. 220–226 (2005)Google Scholar
  8. 8.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  9. 9.
    Myronenko, A., Song, X.: Point set registration: Coherent point drift. IEEE Trans. on Pattern Analysis and Machine Intelligence 32(12), 2262–2275 (2010)CrossRefGoogle Scholar
  10. 10.
    Leordeanu, M., Hebert, M., Sukthankar, R.: An integer projected fixed point method for graph matching and map inference. In: NIPS (2009)Google Scholar
  11. 11.
    Zaslavskiy, M., Bach, F., Vert, J.-P.: A path following algorithm for the graph matching problem. IEEE Trans. on Pattern Analysis and Machine Intelligence 31(12), 2227–2242 (2009)CrossRefGoogle Scholar
  12. 12.
    Serradell, E., Moreno-Noguer, F., Kybic, J., Fua, P.: Robust elastic 2D/3D geometric graph matching. In: SPIE Medical Imaging, vol. 8314(1), pp. 831408-1–831408-8 (2012)Google Scholar
  13. 13.
    Basri, R., Costa, L., Geiger, D., Jacobs, D.: Determining the similarity of deformable shapes. Vision Research 38, 135–143 (1998)CrossRefGoogle Scholar
  14. 14.
    Frenkel, M., Basri, R.: Curve matching using the fast marching method. In: Rangarajan, A., Figueiredo, M.A.T., Zerubia, J. (eds.) EMMCVPR 2003. LNCS, vol. 2683, pp. 35–51. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  15. 15.
    Unser, M.: Splines: A perfect fit for medical imaging. Progress in Biomedical Optics and Imaging 3, 225–236 (2002)Google Scholar
  16. 16.
    Pajdla, T., Gool, L.V.: Matching of 3-D curves using semi-differential invariants. In: IEEE ICCV, pp. 390–395 (1995)Google Scholar
  17. 17.
    Cho, M., Lee, J., Lee, K.M.: Reweighted random walks for graph matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 492–505. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  18. 18.
    Sahni, S.: Computationally related problems. SIAM Journal on Computing 3(4), 262–279 (1974)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research Logistics 2(1–2), 83–97 (1955)CrossRefGoogle Scholar
  20. 20.
    Deng, K., Tian, J., Zheng, J., Zhang, X., Dai, X., Xu, M.: Retinal fundus image registration via vascular structure graph matching. Journal of Biomedical Imaging (2010)Google Scholar
  21. 21.
    Holtmaat, A., Randall, J., Cane, M.: Optical imaging of structural and functional synaptic plasticity in vivo. European Journal of Pharmacology 719(1–3), 128–136 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Center for Machine Perception, Department of Cybernetics, Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations