Skip to main content

Graph-Based and Variational Minimization of Statistical Cost Functionals for 3D Segmentation of Aortic Dissections

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8753))

Included in the following conference series:

Abstract

The objective of this contribution consists in segmenting dissected aortas in computed tomography angiography (CTA) data in order to obtain morphological specifics of each patient’s vessel. Custom-designed stent-grafts represent the only possibility to enable minimally invasive endovascular techniques concerning Type A dissections, which emerge within the ascending aorta (AA). The localization of cross-sectional aortic boundaries within planes orthogonal to a rough aortic centerline relies on a multicriterial 3D graph-based method. In order to consider the often non-circular shape of the dissected aortic cross-sections, the initial circular contour detected in the localization step undergoes a deformation process in 2D, steered by either local or global statistical distribution metrics. The automatic segmentation provided by our novel approach, which widely applies for the delineation of tubular structures of variable shapes and heterogeneous intensities, is compared with ground truth provided by a vascular surgeon for 11 CTA datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avila-Montes, O.C., Kukure, U., Kakadiaris, I.A.: Aorta segmentation in non-contrast cardiac CT images using an entropy-based cost function. In: SPIE Medical Imaging, pp. 76233J–76233J-8. International Society for Optics and Photonics (2010)

    Google Scholar 

  2. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 22(4), 469–483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben Ayed, I., Li, S., Ross, I.: Embedding overlap priors in variational left ventricle tracking. IEEE Trans. Med. Imaging 28(12), 1902–1913 (2009)

    Article  Google Scholar 

  4. Biesdorf, A., Rohr, K., Feng, D., von Tengg-Kobligk, H., Rengier, F., Böckler, D., Kauczor, H.U., Wörz, S.: Segmentation and quantification of the aortic arch using joint 3D model-based segmentation and elastic image registration. Med. Image Anal. 16(6), 1187–1201 (2012)

    Article  Google Scholar 

  5. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  6. Braude, I., Marker, J., Museth, K., Nissanov, J., Breen, D.: Contour-based surface reconstruction using MPU implicit models. Graph. Models 69(2), 139–157 (2007)

    Article  Google Scholar 

  7. de Bruijne, M., van Ginneken, B., Viergever, M.A., Niessen, W.J.: Interactive segmentation of abdominal aortic aneurysms in CTA images. Med. Image Anal. 8(2), 127–138 (2004)

    Article  Google Scholar 

  8. BĂ¼rger, F., Buck, C., Luther, W., Pauli, J.: Image-based object classification of defects in steel using data-driven machine learning optimization. In: Proceedings of VISAPP 2014 - International Conference on Computer Vision Theory and Applications, Scitepress, pp. 143–152 (2014)

    Google Scholar 

  9. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  10. Freedman, D., Zhang, T.: Active contours for tracking distributions. IEEE Trans. Image Process. 13(4), 518–526 (2004)

    Article  Google Scholar 

  11. KovĂ¡cs, T.: Automatic segmentation of the vessel lumen from 3D CTA images of aortic dissection. Diss., Eidgenössische Technische Hochschule ETH ZĂ¼rich, Nr. 19167 (2010)

    Google Scholar 

  12. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)

    Article  MathSciNet  Google Scholar 

  13. Lubniewski, P.J., Miguel, B., Sauvage, V., Lohou, C.: Interactive 3D segmentation by tubular envelope model for the aorta treatment. In: IS&T/SPIE Electronic Imaging, pp. 82901F–82901F-14. International Society for Optics and Photonics (2012)

    Google Scholar 

  14. Michailovich, O., Rathi, Y., Tannenbaum, A.: Image segmentation using active contours driven by the Bhattacharyya gradient flow. IEEE Trans. Image Process. 16(11), 2787–2801 (2007)

    Article  MathSciNet  Google Scholar 

  15. Moon, M.C., Greenberg, R.K., Morales, J.P., Martin, Z., Lu, Q., Dowdall, J.F., Hernandez, A.V.: Computed tomography-based anatomic characterization of proximal aortic dissection with consideration for endovascular candidacy. J. Vasc. Surg. 53(4), 942–949 (2011)

    Article  Google Scholar 

  16. Morariu, C.A., Dohle, D.S., Terheiden, T., Tsagakis, K., Pauli, J.: Polar-based aortic segmentation in 3D CTA dissection data using a piecewise constant curvature model. Bildverarbeitung fĂ¼r die Medizin 2014, pp. 390–395. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  17. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-level partition of unity implicits. ACM Trans. Graph. 22(3), 463–470 (2003)

    Article  Google Scholar 

  18. Osher, s, Fedkiw, R.: Level set methods and dynamic implicit surfaces. Applied Mathematical Sciences, vol. 153. Springer, New York (2003)

    MATH  Google Scholar 

  19. Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

    MathSciNet  Google Scholar 

  20. Sethian, J.A.: Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol. 3. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  21. Wang, X.F., Huang, D.S., Xu, H.: An efficient local Chan-Vese model for image segmentation. Pattern Recogn. 43(3), 603–618 (2010)

    Article  MATH  Google Scholar 

  22. Wendt, D., Thielmann, M., Melzer, A., Benedik, J., Droc, I., Tsagakis, K., Dohle, D.S., Jakob, H., Abele, J.E.: The past, present and future of minimally invasive therapy in endovascular interventions: A review and speculative outlook. Minim. Invasive Ther. Allied Technol. 22(4), 242–253 (2013)

    Article  Google Scholar 

  23. Wörz, S., von Tengg-Kobligk, H., Henninger, V., Rengier, F., Schumacher, H., Böckler, D., Kauczor, H.U., Rohr, K.: 3-D quantification of the aortic arch morphology in 3-D CTA data for endovascular aortic repair. IEEE Trans. Biomed. Eng. 57(10), 2359–2368 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosmin Adrian Morariu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Morariu, C.A., Terheiden, T., Dohle, D.S., Tsagakis, K., Pauli, J. (2014). Graph-Based and Variational Minimization of Statistical Cost Functionals for 3D Segmentation of Aortic Dissections. In: Jiang, X., Hornegger, J., Koch, R. (eds) Pattern Recognition. GCPR 2014. Lecture Notes in Computer Science(), vol 8753. Springer, Cham. https://doi.org/10.1007/978-3-319-11752-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11752-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11751-5

  • Online ISBN: 978-3-319-11752-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics