Skip to main content

Efficient Multiple People Tracking Using Minimum Cost Arborescences

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8753))

Included in the following conference series:

Abstract

We present a new global optimization approach for multiple people tracking based on a hierarchical tracklet framework. A new type of tracklets is introduced, which we call tree tracklets. They contain bifurcations to naturally deal with ambiguous tracking situations. Difficult decisions are postponed to a later iteration of the hierarchical framework, when more information is available. We cast the optimization problem as a minimum cost arborescence problem in an acyclic directed graph, where a tracking solution can be obtained in linear time. Experiments on six publicly available datasets show that the method performs well when compared to state-of-the art tracking algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code is publicly available: http://www.tnt.uni-hannover.de/project/MPT/.

References

  1. Benfold, B., Reid, I.: Stable multi-target tracking in real-time surveillance video. In: CVPR (2011)

    Google Scholar 

  2. Berclaz, J., Fleuret, F., Türetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. TPAMI 33(9), 1806–1819 (2011)

    Article  Google Scholar 

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)

    Google Scholar 

  4. Dicle, C., Sznaier, M., Camps, O.: The way they move: tracking targets with similar appearance. In: ICCV (2013)

    Google Scholar 

  5. Edmonds, J.: Optimum branchings. J. Res. Natl. Bur. Stan. B. Math. Sci. 71B(4), 233–240 (1967)

    Article  MathSciNet  Google Scholar 

  6. Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for robust multi-person tracking. In: CVPR (2008)

    Google Scholar 

  7. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. TPAMI 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  8. Gall, J., Yao, A., Razavi, N., van Gool, L., Lempitsky, V.: Hough forests for object detection, tracking and action recognition. TPAMI 33(11), 2188–2202 (2011)

    Article  Google Scholar 

  9. Gibbons, A.: Algorithmic Graph Theory. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  10. Henriques, J.F., Caseiro, R., Batista, J.: Globally optimal solution to multi-object tracking with merged measurements. In: ICCV (2011)

    Google Scholar 

  11. Huang, C., Wu, B., Nevatia, R.: Robust object tracking by hierarchical association of detection responses. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 788–801. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Jiang, H., Fels, S., Little, J.: A linear programming approach for multiple object tracking. In: CVPR (2007)

    Google Scholar 

  13. Kamiyama, N.: Arborescence problems in directed graphs: theorems and algorithms. Interdisc. Inf. Sci. 20(1), 51–70 (2014). Graduate School of Information Sciences, Tohoku University

    MathSciNet  MATH  Google Scholar 

  14. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955)

    Article  Google Scholar 

  15. Kuo, C.H., Huang, C., Nevatia, R.: Multi-target tracking by on-line learned discriminative appearance models. In: CVPR (2010)

    Google Scholar 

  16. Leal-Taixé, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S.: Learning an image-based motion context for multiple people tracking. In: CVPR (2014)

    Google Scholar 

  17. Leal-Taixé, L., Pons-Moll, G., Rosenhahn, B.: Everybody needs somebody: modeling social and grouping behavior on a linear programming multiple people tracker. In: ICCV Workshops, 1st Workshop on Modeling, Simulation and Visual Analysis of Large Crowds (2011)

    Google Scholar 

  18. Li, Y., Huang, C., Nevatia, R.: Learning to associate: hybrid boosted multi-target tracker for crowded scene. In: CVPR (2009)

    Google Scholar 

  19. Pellegrini, S., Ess, A., Schindler, K., van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: ICCV (2009)

    Google Scholar 

  20. Pirsiavash, H., Ramanan, D., Fowlkes, C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: CVPR (2011)

    Google Scholar 

  21. Qin, Z., Shelton, C.R.: Improving multi-target tracking via social grouping. In: CVPR (2012)

    Google Scholar 

  22. Yang, B., Nevatia, R.: An online learned CRF model for multi-target tracking. In: CVPR (2012)

    Google Scholar 

  23. Yang, B., Nevatia, R.: Multi-target tracking by online learning of non-linear motion patterns and robust appearance models. In: CVPR (2012)

    Google Scholar 

  24. Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: CVPR (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Henschel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Henschel, R., Leal-Taixé, L., Rosenhahn, B. (2014). Efficient Multiple People Tracking Using Minimum Cost Arborescences. In: Jiang, X., Hornegger, J., Koch, R. (eds) Pattern Recognition. GCPR 2014. Lecture Notes in Computer Science(), vol 8753. Springer, Cham. https://doi.org/10.1007/978-3-319-11752-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11752-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11751-5

  • Online ISBN: 978-3-319-11752-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics