Skip to main content

Introducing More Physics into Variational Depth–from–Defocus

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8753))

Abstract

Given an image stack that captures a static scene with different focus settings, variational depth–from–defocus methods aim at jointly estimating the underlying depth map and the sharp image. We show how one can improve existing approaches by incorporating important physical properties. Most formulations are based on an image formation model (forward operator) that explains the varying amount of blur depending on the depth. We present a novel forward operator: It approximates the thin–lens camera model from physics better than previous ones used for this task, since it preserves the maximum–minimum principle w.r.t. the unknown image intensities. This operator is embedded in a variational model that is minimised with a multiplicative variant of the Euler–Lagrange formalism. This offers two advantages: Firstly, it guarantees that the solution remains in the physically plausible positive range. Secondly, it allows a stable gradient descent evolution without the need to adapt the relaxation parameter. Experiments with synthetic and real–world images demonstrate that our model is highly robust under different initialisations. Last but not least, the experiments show that the physical constraints are essential for obtaining more accurate solutions, especially in the presence of strong depth changes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aguet, F., Van De Ville, D., Unser, M.: Model-based 2.5-D deconvolution for extended depth of field in brightfield microscopy. IEEE Trans. Image Process. 17(7), 1144–1153 (2008)

    Article  MathSciNet  Google Scholar 

  2. Barsky, B.A., Kosloff, T.J.: Algorithms for rendering depth of field effects in computer graphics. In: Proceedings of WSEAS International Conference on Computers, pp. 999–1010. World Scientific and Engineering Academy and Society, Heraklion, July 2008

    Google Scholar 

  3. Bhasin, S., Chaudhuri, S.: Depth from defocus in presence of partial self occlusion. In: Proceedings of IEEE International Conference on Computer Vision, vol. 1, pp. 488–493. Vancouver, Canada, July 2001

    Google Scholar 

  4. Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 4th edn. Pergamon Press, Oxford (1970)

    Google Scholar 

  5. Cant, R., Langensieoen, C.: Creating depth of field effects without multiple samples. In: Proceeding of IEEE International Conference on Computer Modelling and Simulation, pp. 159–164. Cambridge, UK, Mar 2012

    Google Scholar 

  6. Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7, 370–375 (1998)

    Article  Google Scholar 

  7. Chaudhuri, S., Rajagopalan, A.: Depth from Defocus: A Real Aperture Imaging Approach. Springer, Berlin (1999)

    Google Scholar 

  8. Cook, R.L., Porter, T., Carpenter, L.: Distributed ray tracing. In: Computer Graphics, SIGGRAPH ’84, pp. 137–145. ACM, Minneapolis, Jul 1984

    Google Scholar 

  9. Favaro, P., Osher, S., Soatto, S., Vese, L.: 3D shape from anisotropic diffusion. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Madison, USA, Jun 2003

    Google Scholar 

  10. Favaro, P., Soatto, S.: Shape and radiance estimation from the information divergence of blurred images. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 755–768. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Favaro, P., Soatto, S., Burger, M., Osher, S.: Shape from defocus via diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 518–531 (2008)

    Article  Google Scholar 

  12. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover, New York (2000)

    MATH  Google Scholar 

  13. Hong, L., Yu, J., Hong, C., Sui, W.: Depth estimation from defocus images based on oriented heat-flows. In: Proceedings of IEEE International Conference on Machine Vision, pp. 212–215. Dubai, UAE (2009)

    Google Scholar 

  14. Jin, H., Favaro, P.: A variational approach to shape from defocus. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part II. LNCS, vol. 2351, pp. 18–30. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Luenberger, D., Ye, Y.: Linear and Nonlinear Programming, 3rd edn. Springer, New York (2008)

    MATH  Google Scholar 

  16. Namboodiri, V.P., Chaudhuri, S.: Use of linear diffusion in depth estimation based on defocus cue. In: Chanda, B., Chandran, S., Davis, L.S. (eds.) Proceedings of Indian Conference on Computer Vision, Graphics and Image Processing, pp. 133–138. Allied Publishers Private Limited, Kolkata (2004)

    Google Scholar 

  17. Namboodiri, V.P., Chaudhuri, S.: On defocus, diffusion and depth estimation. Pattern Recogn. Lett. 28(3), 311–319 (2007)

    Article  Google Scholar 

  18. Namboodiri, V., Chaudhuri, S., Hadap, S.: Regularized depth from defocus. In: Proceedings of IEEE International Conference on Image Processing, San Diego, USA, pp. 1520–1523, Oct 2008

    Google Scholar 

  19. Pentland, A.P.: A new sense for depth of field. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 523–531 (1987)

    Article  Google Scholar 

  20. Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  21. Rokita, P.: Fast generation of depth of field effects in computer graphics. Comput. Graph. 17(5), 593–595 (1993)

    Article  Google Scholar 

  22. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  23. Subbarao, M.: Parallel depth recovery by changing camera parameters. In: Proceedings of IEEE International Conference on Computer Vision, Washington, USA, pp. 149–155, Dec 1988

    Google Scholar 

  24. Sugimoto, S.A., Ichioka, Y.: Digital composition of images with increased depth of focus considering depth information. Appl. Optics 24(14), 2076–2080 (1985)

    Article  Google Scholar 

  25. Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization method. Sov. Math. Doklady 4, 1035–1038 (1963)

    Google Scholar 

  26. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  27. Wei, Y., Dong, Z., Wu, C.: Global depth from defocus with fixed camera parameters. In: Proceedings of IEEE International Conference on Mechatronics and Automation, Changchun, China, pp. 1887–1892, Aug 2009

    Google Scholar 

  28. Welk, M., Nagy, J.G.: Variational deconvolution of multi-channel images with inequality constraints. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4477, pp. 386–393. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Whittaker, E.T.: A new method of graduation. Proc. Edinburgh Math. Soc. 41, 65–75 (1923)

    Google Scholar 

Download references

Acknowledgements

Our research has been partly funded by the Deutsche Forschungsgemeinschaft (DFG) through a Gottfried Wilhelm Leibniz prize for Joachim Weickert and the Cluster of Excellence Multimodal Computing and Interaction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Persch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Persch, N., Schroers, C., Setzer, S., Weickert, J. (2014). Introducing More Physics into Variational Depth–from–Defocus. In: Jiang, X., Hornegger, J., Koch, R. (eds) Pattern Recognition. GCPR 2014. Lecture Notes in Computer Science(), vol 8753. Springer, Cham. https://doi.org/10.1007/978-3-319-11752-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11752-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11751-5

  • Online ISBN: 978-3-319-11752-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics