Advertisement

Image Descriptors Based on Curvature Histograms

  • Philipp FischerEmail author
  • Thomas Brox
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8753)

Abstract

Descriptors based on orientation histograms are widely used in computer vision. The spatial pooling involved in these representations provides important invariance properties, yet it is also responsible for the loss of important details. In this paper, we suggest a way to preserve the details described by the local curvature. We propose a descriptor that comprises the direction and magnitude of curvature and naturally expands classical orientation histograms like SIFT and HOG. We demonstrate the general benefit of the expansion exemplarily for image classification, object detection, and descriptor matching.

Keywords

Object Detection Image Classification Vector Curvature Sift Descriptor Discrete Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work was partially funded by the ERC Starting Grant VideoLearn.

References

  1. 1.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. PAMI 33(5), 898–916 (2011)CrossRefGoogle Scholar
  2. 2.
    Carreira, J., Caseiro, R., Batista, J., Sminchisescu, C.: Semantic segmentation with second-order pooling. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 430–443. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Coeurjolly, D., Miguet, S., Tougne, L.: Discrete curvature based on osculating circle estimation. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 303–312. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)Google Scholar
  5. 5.
    Deng, H., Zhang, W., Mortensen, E.N., Dietterich, T.G., Shapiro, L.G.: Principal curvature-based region detector for object recognition. In: CVPR (2007)Google Scholar
  6. 6.
    Eigenstetter, A., Ommer, B.: Visual recognition using embedded feature selection for curvature self-similarity. In: NIPS, pp. 386–394 (2012)Google Scholar
  7. 7.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results (2007). http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
  8. 8.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. PAMI 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  9. 9.
    Ferrari, V., Tuytelaars, T., Van Gool, L.: Object detection by contour segment networks. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 14–28. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Han, J.H., Poston, T.: Chord-to-point distance accumulation and planar curvature: a new approach to discrete curvature. Pattern Recogn. Lett. 22(10), 1133–1144 (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kerautret, B., Lachaud, J.-O.: Robust estimation of curvature along digital contours with global optimization. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 334–345. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, pp. 2169–2178 (2006)Google Scholar
  13. 13.
    Liu, H., Latecki, L.J., Liu, W., Bai, X.: Visual curvature. In: CVPR (2007)Google Scholar
  14. 14.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  15. 15.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.J.V.: A comparison of affine region detectors. IJCV 65(1–2), 43–72 (2005)CrossRefGoogle Scholar
  16. 16.
    Monroy, A., Eigenstetter, A., Ommer, B.: Beyond straight lines - object detection using curvature. In: ICIP, pp. 3561–3564 (2011)Google Scholar
  17. 17.
    Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press (2006). http://books.google.de/books?id=LFzGwdi0KtsC
  18. 18.
    Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms (2008). http://www.vlfeat.org/

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of FreiburgFreiburg im BreisgauGermany

Personalised recommendations