Skip to main content

Robust PCA: Optimization of the Robust Reconstruction Error Over the Stiefel Manifold

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8753))

Included in the following conference series:

Abstract

It is well known that Principal Component Analysis (PCA) is strongly affected by outliers and a lot of effort has been put into robustification of PCA. In this paper we present a new algorithm for robust PCA minimizing the trimmed reconstruction error. By directly minimizing over the Stiefel manifold, we avoid deflation as often used by projection pursuit methods. In distinction to other methods for robust PCA, our method has no free parameter and is computationally very efficient. We illustrate the performance on various datasets including an application to background modeling and subtraction. Our method performs better or similar to current state-of-the-art methods while being faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The breakdown point [8] of a statistical estimator is informally speaking the fraction of points which can be arbitrarily changed and the estimator is still well defined.

  2. 2.

    Note, that the LLD algorithm [14] and the OPRPCA algorithm [20] are equivalent.

References

  1. Bouwmans, T.: Recent advanced statistical background modeling for foreground detection: a systematic survey. Recent Pat. Comput. Sci. 4(3), 147–176 (2011)

    Google Scholar 

  2. Candès, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 11:1–11:37 (2011)

    Article  Google Scholar 

  3. Croux, C., Pilzmoser, P., Oliveira, M.R.: Algorithms for projection-pursuit robust principal component analysis. Chemometr. Intell. Lab. Syst. 87, 218–225 (2007)

    Article  Google Scholar 

  4. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics: The Approach Based on Influence Functions. John Wiley and Sons, New York (1986)

    MATH  Google Scholar 

  5. Higham, N.J., Schreiber, R.S.: Fast polar decomposition of an arbitrary matrix. SIAM J. Sci. Comput. 11(4), 648–655 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  7. Huber, P.J.: Projection pursuit. Ann. Stat. 13(2), 435–475 (1985)

    Article  MATH  Google Scholar 

  8. Huber, P., Ronchetti, E.: Robust Statistics, 2nd edn. John Wiley and Sons, New York (2009)

    Book  MATH  Google Scholar 

  9. Jolliffe, I.: Principal Component Analysis. Springer Series in Statistics, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  10. Journée, M., Nesterov, Y., Richtárik, P., Sepulchre, R.: Generalized power method for sparse principal component analysis. J. Mach. Learn. Res. 1(1), 517–553 (2010)

    Google Scholar 

  11. Li, G., Chen, Z.: Projection-pursuit approach to robust dispersion matrices and principal components: primary theory and Monte Carlo. J. Am. Stat. Assoc. 80(391), 759–766 (1985)

    Article  MATH  Google Scholar 

  12. Mackey, L.: Deflation methods for sparse PCA. In: 24th Conference on Neural Information Processing Systems, pp. 1017–1024 (2009)

    Google Scholar 

  13. Mateos, G., Giannakis, G.: Robust PCA as bilinear decomposition with outlier-sparsity regularization. IEEE Trans. Signal Process. 60(10), 5176–5190 (2012)

    Article  MathSciNet  Google Scholar 

  14. McCoy, M., Tropp, J.A.: Two proposals for robust PCA using semidefinite programming. Electron. J. Stat. 5, 1123–1160 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rousseeuw, P.J.: Least median of squares regression. J. Am. Stat. Assoc. 79(388), 871–880 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Supplementary material. http://www.ml.uni-saarland.de/code/trpca/trpca.html

  17. De la Torre, F., Black, M.: Robust principal component analysis for computer vision. In: 8th IEEE International Conference on Computer Vision, pp. 362–369 (2001)

    Google Scholar 

  18. Wright, J., Peng, Y., Ma, Y., Ganesh, A., Rao, S.: Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization. In: 24th Conference on Neural Information Processing Systems, pp. 2080–2088 (2009)

    Google Scholar 

  19. Xu, H., Caramanis, C., Mannor, S.: Outlier-robust PCA: the high dimensional case. IEEE Trans. Inf. Theory 59(1), 546–572 (2013)

    Article  MathSciNet  Google Scholar 

  20. Xu, H., Caramanis, C., Sanghavi, S.: Robust PCA via outlier pursuit. IEEE Trans. Inf. Theory 58(5), 3047–3064 (2012)

    Article  MathSciNet  Google Scholar 

  21. Xu, L., Yuille, A.L.: Robust principal component analysis by self-organizing rules based on statistical physics approach. IEEE Trans. Neural Networks 6, 131–143 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

M.H. has been partially supported by the ERC Starting Grant NOLEPRO and M.H. and S.S. have been partially supported by the DFG Priority Program 1324, “Extraction of quantifiable information from complex systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Podosinnikova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Podosinnikova, A., Setzer, S., Hein, M. (2014). Robust PCA: Optimization of the Robust Reconstruction Error Over the Stiefel Manifold. In: Jiang, X., Hornegger, J., Koch, R. (eds) Pattern Recognition. GCPR 2014. Lecture Notes in Computer Science(), vol 8753. Springer, Cham. https://doi.org/10.1007/978-3-319-11752-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11752-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11751-5

  • Online ISBN: 978-3-319-11752-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics