Skip to main content

UCS Proteins: Chaperones for Myosin and Co-Chaperones for Hsp90

  • Chapter
  • First Online:
The Networking of Chaperones by Co-chaperones

Part of the book series: Subcellular Biochemistry ((SCBI,volume 78))

Abstract

The UCS (UNC-45/CRO1/She4p) family of proteins has emerged as chaperones that are specific for the folding, assembly and function of myosin. These proteins participate in various important myosin-dependent cellular processes that include myofibril organization and muscle functions, cell differentiation, cardiac and skeletal muscle development, cytokinesis and endocytosis. Mutations in the genes that code for UCS proteins cause serious defects in these actomyosin-based processes. Homologs of UCS proteins can be broadly divided into (1) animal UCS proteins, generally known as UNC-45 proteins, which contain an N-terminal tetratricopeptide repeat (TPR) domain in addition to the canonical UCS domain, and (2) fungal UCS proteins, which lack the TPR domain. Structurally, except for TPR domain, both sub-classes of UCS proteins comprise of several irregular armadillo (ARM) repeats that are divided into two-domain architecture: a combined central-neck domain and a C-terminal UCS domain. Structural analyses suggest that UNC-45 proteins form elongated oligomers that serve as scaffolds to recruit Hsp90 and/or Hsp70 to form a multi-protein chaperoning complex that assists myosin heads to fold and simultaneously organize them into myofibrils. Similarly, fungal UCS proteins may dimerize to promote folding of non-muscle myosins as well as determine their step size along actin filaments. These findings confirm UCS proteins as a new class of myosin-specific chaperones and co-chaperones for Hsp90. This chapter reviews the implications of the outcome of studies on these proteins in cellular processes such as muscle formation, and disease states such as myopathies and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amorim MJ, Mata J (2009) Rng3, a member of the UCS family of myosin co-chaperones, associates with myosin heavy chains cotranslationally. EMBO Rep 10(2):186–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson MJ, Pham VN, Vogel AM et al (2008) Loss of unc45a precipitates arteriovenous shunting in the aortic arches. Dev Biol 318(2):258–267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ao W, Pilgrim D (2000) Caenorhabditis elegans UNC-45 is a component of muscle thick filaments and colocalizes with myosin heavy chain B, but not myosin heavy chain A. J Cell Biol 148:375–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ardizzi JP, Epstein HF (1987) Immunochemical localization of myosin heavy chain isoforms and paramyosin in developmentally and structurally diverse muscle cell types of the nematode Caenorhabditis elegans. J Cell Biol 105:2763–2770

    Article  CAS  PubMed  Google Scholar 

  • Atkinson SJ, Stewart M (1991) Expression in Escherichia coli of fragments of the coiled-coil rod domain of rabbit myosin: influence of different regions of the molecule on aggregation and paracrystal formation. J Cell Sci 99:823–836

    CAS  PubMed  Google Scholar 

  • Balasubramanian MK, McCollum D, Chang L et al (1998) Isolation and characterization of new fission yeast cytokinesis mutants. Genetics 149:1265–1275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barral JM, Bauer CC, Ortiz I et al (1998) Unc-45 mutations in Caenorhabditis elegans implicate a CRO1/She4p-like domain in myosin assembly. J Cell Biol 143(5):1215–1225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barral JM, Hutagalung AH, Brinker A et al (2002) Role of myosin assembly protein UNC-45 as a molecular chaperone for myosin. Science 295:669–671

    Article  CAS  PubMed  Google Scholar 

  • Bazzaro M, Santillan A, Lin Z et al (2007) Myosin II co-chaperone general cell UNC-45 overexpression is associated with ovarian cancer, rapid proliferation, and motility. Am J Pathol 171(15):1640–1649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bernick EP, Zhang PJ, Du S (2010) Knockdown and overexpression of Unc-45b result in defective myofibril organization in skeletal muscles of zebrafish embyos. BMC Cell Biol 11:70

    Article  PubMed Central  PubMed  Google Scholar 

  • Berteaux-Lecellier V, Zickler D, Debuchy R et al (1998) A homologue of the yeast SHE4 gene is essential for the transition between the syncytial and cellular stages during sexual reproduction of the fungus Podospora anserina. EMBO J 17:1248–1258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21:932–939

    Article  CAS  PubMed  Google Scholar 

  • Chadli A, Graham JD, Abel MG et al (2006) GCUNC-45 is a novel regulator for the progesterone receptor/hsp90 chaperoning pathway. Mol Cell Biol 26(5):1772–1730

    Article  Google Scholar 

  • Chadli A, Felts SJ, Toft DO (2008) GCUNC45 is the first Hsp90 co-chaperone to show alpha/beta isoform specificity. J Biol Chem 283(15):9509–9512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen D, Li S, Singh R et al (2012) Dual function of the UNC-45b chaperone with myosin and GATA4 in cardiac development. J Cell Sci 125(Pt 16):3893–3903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chow D, Srikakulam R, Chen Y et al (2002) Folding of the striated muscle myosin motor domain. J Biol Chem 277:36799–36807

    Article  CAS  PubMed  Google Scholar 

  • Comyn SA, Pilgrim D (2012) Lack of developmental redundancy between Unc45 proteins in zebrafish muscle development. PLoS One 7(11):e48861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Das AK, Cohen PTW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5, implications for TPR-mediated protein-protein interactions. EMBO J 17:1192–1199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Du SJ, Li H, Bian Y et al (2008) Heat-shock protein 90alpha1 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos. Proc Natl Acad Sci U S A 105(2):554–559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Epping MT, Mejer LA, Bos JL et al (2009) UNC45A confers resistance to histone deacetylase inhibitors and retinoic acid. Mol Cancer Res 7(11):1861–1870

    Article  CAS  PubMed  Google Scholar 

  • Epstein HF, Thomson JN (1974) Temperature-sensitive mutation affecting myofilament assembly in Caenorhabditis elegans. Nature 250:579–580

    Article  CAS  PubMed  Google Scholar 

  • Etard C, Roostalu U, Strahle U (2008) Shuttling of the chaperone Unc45b and Hsp90a between the A band and the Z line of the myofibril. J Cell Biol 180(6):1163–1175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Etard C, Roostalu U, Strahle U (2010) Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos. J Cell Biol 189(3):527–539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fratev F, Osk Jonsdottir S, Pajeva I (2013) Structural insight into the UNC-45-myosin complex. Proteins 81(7):1212–1221

    Article  CAS  PubMed  Google Scholar 

  • Gaiser AM, Kaiser CJ, Haslbeck V et al (2011) Downregulation of the Hsp90 system causes defects in muscle cells of Caenorhabditis elegans. PLoS One 6(9):e25485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gazda L, Pokrzywa W, Hellerschmied D et al (2013) The myosin chaperone UNC-45 is organized in tandem modules to support myofilament formation in C. elegans. Cell 152(1–2):183–195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geach TJ, Zimmerman LB (2010) Paralysis and delayed Z-disc formation in the Xenopus tropicalis unc45b mutant dicky ticker. BMC Dev Biol 10:75

    Article  PubMed Central  PubMed  Google Scholar 

  • Guo S, Kemphues KJ (1996) A nonmuscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature 382:455–458

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Chen D, Fan Z et al (2011) Differential turnover of myosin chaperone UNC-45A isoforms increases in metastatic human breast cancer. J Mol Biol 412(3):365–378

    Article  CAS  PubMed  Google Scholar 

  • Hansen L, Comyn S, Mang Y et al (2014) The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract. Eur J Hum Genet doi:10.1038/ejhg.2014.21

    Google Scholar 

  • Hellerschmied D, Clausen T (2014) Myosin chaperones. Curr Opin Struct Biol 25:9–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoppe T, Cassata G, Barral JM et al (2004) Regulation of the myosin-directed chaperone UNC-45 by a novel E3/E4-multiubiquitylation complex in C. elegans. Cell 118(3):337–349

    Article  CAS  PubMed  Google Scholar 

  • Hutagalung AH, Landsverk ML, Price MG et al (2002) The UCS family of myosin chaperones. J Cell Sci 115:3983–3990

    Article  CAS  PubMed  Google Scholar 

  • Janiesch PC, Kim J, Mouysset J et al (2007) The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy. Nat Cell Biol 9(4):379–390

    Article  CAS  PubMed  Google Scholar 

  • Jansen RP, Dowzer C, Michaelis C et al (1996) Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Cell 84:651–654

    Article  Google Scholar 

  • Kachur T, Ao W, Berger J et al (2004) Maternal UNC-45 is involved in cytokinesis and colocalizes with nonmuscle myosin in the early Caenorhabditis elegans embryo. J Cell Sci 117:5313–5321

    Article  CAS  PubMed  Google Scholar 

  • Kachur TM, Audhya A, Pilgrim DB (2008) UNC-45 is required for NMY-2 contractile function in early embryonic polarity establishment and germline cellularization in C. elegans. Dev Biol 314(2):287–299

    Article  CAS  PubMed  Google Scholar 

  • Kaiser CM, Bujalowski PJ, Ma L et al (2012) Tracking UNC-45 chaperone-myosin interaction with a titin mechanical reporter. Biophys J 102(9):2212–2219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinose F, Wang SX, Kidambi US (1996) Glycine 699 is pivotal for the motor activity of skeletal muscle myosin. J Cell Biol 134:895–909

    Article  CAS  PubMed  Google Scholar 

  • Kuczmarski ER, Spudich JA (1980) Regulation of myosin self-assembly: phosphorylation of Dictyostelium heavy chain inhibits formation of thick filaments. Proc Natl Acad Sci U S A 77:7292–7296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Landsverk ML, Epstein HF (2005) Genetic analysis of myosin II assembly and organization in model organisms. Cell Mol Life Sci 62:2270–2282

    Article  CAS  PubMed  Google Scholar 

  • Landsverk ML, Li S, Hutagalung AH et al (2007) The UNC-45 chaperone mediates sarcomere assembly through myosin degradation in Caenorhabditis elegans. J Cell Biol 177(2):205–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee CF, Hauenstein AV, Fleming JK et al (2011a) X-ray crystal structure of the UCS domain-containing UNC-45 myosin chaperone from Drosophila melanogaster. Structure 19(3):397–408

    Article  CAS  Google Scholar 

  • Lee CF, Melkani GC, Yu Q et al (2011b) Drosophila UNC-45 accumulates in embryonic blastoderm and in muscles, and is essential for muscle myosin stability. J Cell Sci 124(Pt 5):699–705

    Article  CAS  Google Scholar 

  • Liu L, Srikakulam R., Winklemann DA (2008) UNC45 activates Hsp90-dependent folding of the myosin motor domain. J Biol Chem 283(19):13185–13193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lord M, Pollard TD (2004) UCS proteins Rng3p activates actin filament gliding by fission yeast myosin-II. J Cell Biol 167(2):315–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lord M, Sladewski TE, Pollard TD (2008) Yeast UCS proteins promote actomyosin interactions and limit myosin turnover in cells. Proc Natl Acad Sci U S A 105(23):8014–8019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McNally EM, Goodwin EB, Spudich JA et al (1988) Coexpression and assembly of myosin heavy chain and myosin light chain in Escheichia coli. Proc Natl Acad Sci U S A 85:7270–7273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Melkani GC, Lee CF, Cammarato A et al (2010) Drosophila UNC-45 prevents heat-induced aggregation of skeletal muscle myosin and facilitates refolding of citrate synthase. Biochem Biophys Res Commun 396(2):317–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Melkani GC, Bodmer R, Ocorr K et al (2011) The UNC-45 chaperone is critical for establishing myosin-based myofibrillar organization and cardiac contractility in the Drosophila heart model. PLoS One 6(7):e22579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Melkani GC, Trujillo AS, Ramos R et al (2013) Huntington’s disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart. PLoS Genet 9(12):e1004024

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller DM, Ortiz I, Berliner GC et al (1983) Differential localization of two myosins within nematode thick filaments. Cell 34:477–490

    Article  CAS  PubMed  Google Scholar 

  • Millson SH, Truman AW, King V et al (2005) A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot Cell 4:849–860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra M, D’souza VM, Chang KC et al (2005) Hsp90 protein in fission yeast Swo1p and UCS protein Rng3p facilitate myosin II assembly and function. Eukaryot Cell 4:567–576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchell EJ, Karn J, Brown DM et al (1989) Regulatory and essential light-chain-binding sites in myosin heavy chain subfragment-1 mapped by site-directed mutagenesis. J Mol Biol 208:199–25

    Article  CAS  PubMed  Google Scholar 

  • Myhre JL, Hills JA, Jean F et al (2014) Unc45b is essential for early myofibrillogenesis and costamere formation in zebrafish. Dev Biol 390(1):26–40

    Article  CAS  PubMed  Google Scholar 

  • Ni W, Hutagalung AH, Li S et al (2011) The myosin-binding UCS domain but not the Hsp90-binding TPR domain of the UNC-45 chaperone is essential for function in Caenorhabditis elegans. J Cell Sci 124(Pt 18):3164–3173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Odunuga OO, Epstein HF (2007) UNC-45: a chaperone for myosin and a co-chaperone for Hsp90. In: Blatch GL (ed) Networking of chaperones by co-chaperones. Springer, New York

    Google Scholar 

  • Peifer M, Berg S, Ryenolds AB (1994) A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76(5):789–791

    Article  CAS  PubMed  Google Scholar 

  • Price MG, Landsverk ML, Barral JM et al (2002) Two mammalian UNC-45 isoforms are related to distinct cytoskeletal and muscle-specific functions. J Cell Sci 115:4013–4023

    Article  CAS  PubMed  Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Base K et al (1993a) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  CAS  Google Scholar 

  • Rayment I, Holden HM, Whittaker M et al (1993b) Structure of the actin-myosin complex and its implication for muscle contraction. Science 261:58–65

    Article  CAS  Google Scholar 

  • Saraswat LD, Lowey S (1991) Engineered cysteine mutants of myosin light chain 2: fluorescent analogues for structural studies. J Biol Chem 266:19777–19785

    CAS  PubMed  Google Scholar 

  • Schachat F, Harris HE, Epstein HF (1977) Two homogeneous myosins in body-wall muscle of Caenorhabditis elegans. Cell 10:721–728

    Article  CAS  PubMed  Google Scholar 

  • Scheufler C, Brinker A, Bourenkov G et al (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199–210

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Blobel G (2010) UNC-45/CRO1/She4p (UCS) protein forms elongated dimer and joins two myosin heads near their actin binding region. Proc Natl Acad Sci U S A 107(50):21382–21387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sikorski RS, Boguski MS, Goebl M (1990) A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60:307–317

    Article  CAS  PubMed  Google Scholar 

  • Srikakulam R, Winkelmann DA (1999) Myosin II folding is mediated by a molecular chaperone. J Biol Chem 274:27265–27273

    Article  CAS  PubMed  Google Scholar 

  • Srikakulam R, Winklemann DA (2004) Chaperone-mediated folding and assembly of myosin in striated muscle. J Cell Sci 117:641–652

    Article  CAS  PubMed  Google Scholar 

  • Srikakulam R, Liu L, Winkelmann DA (2008) UNC45b forms a cytosolic complex with Hsp90 and targets the unfolded myosin motor domain. PLoS One 3(5):e2137

    Article  PubMed Central  PubMed  Google Scholar 

  • Stark BC, James ML, Pollard LW (2013) UCS protein Rng3p is essential for myosin-II motor activity during cytokinesis in fission yeast. PLoS One 8(11):e79593

    Article  PubMed Central  PubMed  Google Scholar 

  • Sweeney HL, Rosenfeld SS, Brown F et al (1998) Kinetic tuning of myosin via a flexible loop adjacent to the nucleotide binding pocket. J Biol Chem 273:6262–6270

    Article  CAS  PubMed  Google Scholar 

  • Toi H, Fujimura-Kamada K, Irie K et al (2003) She4p/Dim1p interacts with the motor domain of unconventional myosins in the budding yeast, Saccharomyces cerevisiae. Mol Biol Cell 14:2237–2249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trybus KM (1994) Regulation of expressed truncated smooth muscle myosins. Role of the essential light chain and tail length. J Biol Chem 269:20819–20822

    CAS  PubMed  Google Scholar 

  • Venolia L, Waterston RH (1990) The unc-45 gene of Caenorhabditis elegans is an essential muscle-affecting gene with maternal expression. Genetics 126:345–353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Venolia L, Ao W, Kim S et al (1999) unc-45 gene of Caenorhabditis elegans encodes a muscle-specific tetratricopeptide repeat-containing protein. Cell Mot Cytoskeleton 42:163–177

    Article  CAS  Google Scholar 

  • Wang F, Chen L, Arcucci O et al (2000) Effect of ADP and ionic strength on the kinetic and motile properties of recombinant mouse myosin V. J Biol Chem 275:4329–4335

    Article  CAS  PubMed  Google Scholar 

  • Waterston RH (1988) Muscle. In: Wood WB (ed) The nematode Caenorhabditis elegans. Cold Spring Harbor, New York

    Google Scholar 

  • Waterston RH (1989) The minor myosin heavy chain, mhcA, of Caenorhabditis elegans is necessary for the initiation of thick filament assembly. EMBO J 8:3429–3436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waterston RH, Thomson JN, Brenner S (1980) Mutants with altered muscle structure in Caenorhabditis elegans. Dev Biol 77:271–302

    Article  CAS  PubMed  Google Scholar 

  • Wendland B, McCaffrey JM, Xiao Q et al (1996) A novel fluroscence-activated cell sorter-based screen for yeast endocytosis mutants identifies a yeast homologue of mammalian eps15. J Cell Biol 135:1485–1500

    Article  CAS  PubMed  Google Scholar 

  • Wesche S, Arnold M, Jansen RP (2003) The UCS domain protein She4p binds to myosin motor domains and is essential for class I and class V myosin function. Curr Biol 13:715–724

    Article  CAS  PubMed  Google Scholar 

  • Wohlgemuth SL, Crawford BD, Pilgrim DB (2007) The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish. Dev Biol 303(2):483–492

    Article  CAS  PubMed  Google Scholar 

  • Wong KCY, Naqvi NI, Lino Y et al (2000) Fission yeast Rng3p: an UCS-domain protein that mediates myosin II assembly during cytokinesis. J Cell Sci 113:2421–2432

    CAS  PubMed  Google Scholar 

  • Wong KCY, D’souza VM, Naqvi NI et al (2002) Importance of a myosin II-containing progenitor for actomyosin ring assembly in fission yeast. Curr Biol 12:724–729

    Article  CAS  PubMed  Google Scholar 

  • Young JC, Barral JM, Hartl FU (2003) More than unfolding: localized functions of cytosolic chaperones. Trends Biochem Sci 28:541–547

    Article  CAS  PubMed  Google Scholar 

  • Yu QI, Bernstein SI (2003) UCS proteins: managing the myosin. Curr Biol 13:525–527

    Article  Google Scholar 

  • Yu Q, Hipolito LC, Kronert WA et al (2003) Characterization and functional analysis of the Drosophila melanogaster unc-45 (dunc-45) gene. Mol Biol Cell 14:45

    Article  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of the late Dr. Henry F. Epstein who was a pioneer of work on UNC-45 and myosins. The authors are grateful to Drs. Hellerschmied and Clausen for providing the original copies of Figs. 7.2 (without the insert) and 7.3. Texts and figures from the first edition of this book were used with kind permission from Springer Science + Business Media: Networking of Chaperones by Co-Chaperones, UNC-45: a chaperone for myosin and a co-chaperone for Hsp90, 2007, pp. 62–74, Odutayo O. Odunuga & Henry F. Epstein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odutayo O. Odunuga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ni, W., Odunuga, O. (2015). UCS Proteins: Chaperones for Myosin and Co-Chaperones for Hsp90. In: Blatch, G., Edkins, A. (eds) The Networking of Chaperones by Co-chaperones. Subcellular Biochemistry, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-11731-7_7

Download citation

Publish with us

Policies and ethics