Skip to main content

Specification of Hsp70 Function by Type I and Type II Hsp40

  • Chapter
  • First Online:
The Networking of Chaperones by Co-chaperones

Part of the book series: Subcellular Biochemistry ((SCBI,volume 78))

Abstract

Cellular homeostasis and stress survival requires maintenance of the proteome and suppression of proteotoxicity. Molecular chaperones promote cell survival through repair of misfolded proteins and cooperation with protein degradation machines to discard terminally damaged proteins. Hsp70 family members play an essential role in cellular protein metabolism by binding and releasing nonnative proteins to facilitate protein folding, refolding and degradation. Hsp40 family members are Hsp70 co-chaperones that determine the fate of Hsp70 clients by facilitating protein folding, assembly, and degradation. Hsp40s select substrates for Hsp70 via use of an intrinsic chaperone activity to bind non-native regions of proteins. During delivery of bound cargo Hsp40s employ a conserved J-domain to stimulate Hsp70 ATPase activity and thereby stabilize complexes between Hsp70 and non-native proteins. Type I and Type II Hsp40s direct Hsp70 to preform multiple functions in protein homeostasis. This review describes the mechanisms by which Type I and Type II sub-types of Hsp40 bind and deliver substrates to Hsp70.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aron R, Lopez N, Walter W, Craig EA, Johnson J (2005) In vivo Bipartite Interaction between the Hsp40 Sis1 and Hsp70 in Saccharomyces cerevisiae. Genetics 169:1873–1882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aron R, Higurashi T, Sahi C, Craig EA (2007) J-protein co-chaperone Sis1 required for generation of [RNQ(+)] seeds necessary for prion propagation. EMBO J 26(16):3794–3803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borges JC, Fischer H, Craievich AF, Ramos CH (2005) Low-resolution structural study of two human Hsp40 chaperones in solution. DjA1 from subfamily A and DjB4 from subfamily B have different quaternary structures. J Biol Chem 280:13671–13681

    Article  CAS  PubMed  Google Scholar 

  • Borges JC, Seraphim TV, Mokry DZ, Almeida FC, Cyr DM, Ramos CH (2012) Identification of regions involved in substrate binding and dimer stabilization within the central domains of yeast Hsp40 Sis1. PLoS One 7:e50927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buchberger A, Bukau B, Sommer T (2010) Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell 40:238–252

    Article  CAS  PubMed  Google Scholar 

  • Cajo GC, Horne BE, Kelley WL, Schwager F, Georgopoulos C, Genevaux P (2006) The role of the DIF motif of the DnaJ (Hsp40) co-chaperone in the regulation of the DnaK (Hsp70) chaperone cycle. J Biol Chem 281:12436–12444

    Article  CAS  PubMed  Google Scholar 

  • Caplan AJ, Cyr DM, Douglas MG (1992a) YDJ1p facilitates polypeptide translocation across different intracellular membranes by a conserved mechanism. Cell 71:1143–1155

    Google Scholar 

  • Caplan AJ, Tsai J, Casey PJ, Douglas MG (1992b) Farnesylation of YDJ1p is required for function at elevated growth temperatures in Saccharomyces cerevisiae. J Biol Chem 267:18890–18895

    Google Scholar 

  • Caplan AJ, Cyr DM, Douglas MG (1993) Eukaryotic homologues of Escherichia coli dnaJ: a diverse protein family that functions with hsp70 stress proteins. Mol Biol Cell 4:555–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cyr DM (1995) Cooperation of the molecular chaperone Ydj1 with specific Hsp70 homologs to suppress protein aggregation. FEBS Lett 359:129–132

    Article  CAS  PubMed  Google Scholar 

  • Cyr DM (2008) Swapping nucleotides, tuning Hsp70. Cell 133(6):945–947

    Article  CAS  PubMed  Google Scholar 

  • Cyr DM, Douglas MG (1994) Differential regulation of Hsp70 subfamilies by the eukaryotic DnaJ homologue YDJ1. J Biol Chem 269:9798–9804

    CAS  PubMed  Google Scholar 

  • Cyr DM, Lu X, Douglas MG (1992) Regulation of Hsp70 function by a eukaryotic DnaJ homolog. J Biol Chem 267:20927–20931

    CAS  PubMed  Google Scholar 

  • Cyr DM, Langer T, Douglas MG (1994) DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci 19:176–181

    Article  CAS  PubMed  Google Scholar 

  • Cyr DM, Hohfeld J, Patterson C (2002) Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem Sci 27:368–375

    Article  CAS  PubMed  Google Scholar 

  • Douglas PM, Treusch S, Ren HY, Halfmann R, Duennwald ML, Lindquist S, Cyr DM (2008) Chaperone-dependent amyloid assembly protects cells from prion toxicity. Proc Natl Acad Sci U S A 105:7206–7211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Douglas PM, Summers DW, Ren HY, Cyr DM (2009) Reciprocal efficiency of RNQ1 and polyglutamine detoxification in the cytosol and nucleus. Mol Biol Cell 20:4162–4173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan CY, Lee S, Cyr DM (2003) Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 8:309–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan CY, Lee S, Ren HY, Cyr DM (2004) Exchangeable chaperone modules contribute to specification of type I and type II Hsp40 cellular function. Mol Biol Cell 15:761–773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan CY, Ren HY, Lee P, Caplan AJ, Cyr DM (2005a) The type I Hsp40 zinc finger-like region is required for Hsp70 to capture non-native polypeptides from Ydj1. J Biol Chem 280:695–702

    Google Scholar 

  • Fan CY, Ren HY, Lee P, Caplan AJ, Cyr DM (2005b) The type I Hsp40 zinc finger-like region is required for Hsp70 to capture non-native polypeptides from Ydj1. J Biol Chem 280:695–702

    Google Scholar 

  • Goodwin EC, Motamedi N, Lipovsky A, Fernandez-Busnadiego R, DiMaio D (2014) Expression of DNAJB12 or DNAJB14 causes coordinate invasion of the nucleus by membranes associated with a novel nuclear pore structure. PLoS One 9:e94322

    Article  PubMed Central  PubMed  Google Scholar 

  • Grove DE, Fan CY, Ren HY, Cyr DM (2011) The endoplasmic reticulum-associated Hsp40 DNAJB12 and Hsc70 cooperate to facilitate RMA1 E3-dependent degradation of nascent CFTRDeltaF508. Mol Biol Cell 22:301–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Houck SA, Ren HY, Madden VJ, Bonner JN, Conlin MP, Janovick JA, Conn PM, Cyr DM (2014) Quality control autophagy degrades soluble ERAD-resistant conformers of the misfolded membrane protein GnRHR. Mol Cell 54:166–179

    Article  CAS  PubMed  Google Scholar 

  • Johnson JL, Craig EA (2001) An essential role for the substrate-binding region of Hsp40s in Saccharomyces cerevisiae. J Cell Biol 152:851–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82:323–355

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Yahara I, Lindquist S (1995) Role of the protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways. Science 268:1362–1365

    Article  CAS  PubMed  Google Scholar 

  • Kota P, Summers DW, Ren HY, Cyr DM, Dokholyan NV (2009) Identification of a consensus motif in substrates bound by a Type I Hsp40. Proc Natl Acad Sci U S A 106:11073–11078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Langer T, Lu C, Echols H, Flanagan J, Hayer MK, Hartl FU (1992) Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356:683–689

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Fan CY, Younger JM, Ren H, Cyr DM (2002) Identification of essential residues in the type II Hsp40 Sis1 that function in polypeptide binding. J Biol Chem 277:21675–21682

    Article  CAS  PubMed  Google Scholar 

  • Li J, Sha B (2003) Preliminary X-ray crystallographic studies of yeast Hsp40 Ydj1 complexed with its peptide substrate. Acta Crystallogr D Biol Crystallogr 59:1317–1319

    Article  PubMed  Google Scholar 

  • Li J, Qian X, Sha B (2003) The crystal structure of the yeast hsp40 ydj1 complexed with its Peptide substrate. Structure 11:1475–1483

    Article  CAS  PubMed  Google Scholar 

  • Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M (1991) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci U S A 88:2874–2878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Linke K, Wolfram T, Bussemer J, Jakob U (2003) The roles of the two zinc binding sites in DnaJ. J Biol Chem 278:44457–44466

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Cyr DM (1998a) The conserved carboxyl terminus and zinc finger-like domain of the co-chaperone Ydj1 assist Hsp70 in protein folding. J Biol Chem 273:5970–5978

    Google Scholar 

  • Lu Z, Cyr DM (1998b) Protein folding activity of Hsp70 is modified differentially by the hsp40 co-chaperones Sis1 and Ydj1. J Biol Chem 273:27824–27830

    Google Scholar 

  • Luke MM, Sutton A, Arndt KT (1991) Characterization of SIS1, a Saccharomyces cerevisiae homologue of bacterial dnaJ proteins. J Cell Biol 114:623–638

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Yamout M, Legge GB, Zhang O, Wright PE, Dyson HJ (2000) Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ. J Mol Biol 300:805–818

    Article  CAS  PubMed  Google Scholar 

  • Meacham GC, Lu Z, King S, Sorscher E, Tousson A, Cyr DM (1999) The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J 18:1492–1505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nature Cell Biol 3:100–105

    Article  CAS  PubMed  Google Scholar 

  • Mokranjac D, Sichting M, Neupert W, Hell K (2003) Tim14, a novel key component of the import motor of the TIM23 protein translocase of mitochondria. EMBO J 22:4945–4956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park SH, Kukushkin Y, Gupta R, Chen T, Konagai A, Hipp MS, Hayer-Hartl M, Hartl FU (2013) PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell 154:134–145

    Article  CAS  PubMed  Google Scholar 

  • Qian X, Hou W, Zhengang L, Sha B (2002) Direct interactions between molecular chaperones heat-shock protein (Hsp) 70 and Hsp40: yeast Hsp70 Ssa1 binds the extreme C-terminal region of yeast Hsp40 Sis1. Biochem J 361:27–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramos CH, Oliveira CL, Fan CY, Torriani IL, Cyr DM (2008) Conserved central domains control the quaternary structure of type I and type II Hsp40 molecular chaperones. J Mol Biol 383:155–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rudiger S, Schneider-Mergener J, Bukau B (2001) Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO J 20:1042–1050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sha B, Lee S, Cyr DM (2000) The crystal structure of the peptide-binding fragment from the yeast Hsp40 protein Sis1. Structure 8:799–807

    Article  CAS  PubMed  Google Scholar 

  • Silva JC, Borges JC, Cyr DM, Ramos CH, Torriani IL (2011) Central domain deletions affect the SAXS solution structure and function of yeast Hsp40 proteins Sis1 and Ydj1. BMC Struct Biol 11:40. doi:10.1186/1472-6807-11-40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sondheimer N, Lopez N, Craig EA, Lindquist S (2001) The role of Sis1 in the maintenance of the [RNQ +] prion. EMBO J 20:2435–2442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sopha P, Kadokura H, Yamamoto YH, Takeuchi M, Saito M, Tsuru A, Kohno K (2012) A novel mammalian ER-located J-protein, DNAJB14, can accelerate ERAD of misfolded membrane proteins. Cell Struct Funct 37:177–187

    Article  CAS  PubMed  Google Scholar 

  • Summers DW, Douglas PM, Ramos CH, Cyr DM (2009a) Polypeptide transfer from Hsp40 to Hsp70 molecular chaperones. Trends Biochem Sci 34:230–233

    Google Scholar 

  • Summers DW, Douglas PM, Ren HY, Cyr DM (2009b) The type I Hsp40 Ydj1 utilizes a farnesyl moiety and zinc finger-like region to suppress prion toxicity. J Biol Chem 284:3628–3639

    Google Scholar 

  • Summers DW, Wolfe KJ, Ren HY, Cyr DM (2013) The Type II Hsp40 Sis1 cooperates with Hsp70 and the E3 ligase Ubr1 to promote degradation of terminally misfolded cytosolic protein. PLoS One 8:e52099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Theodoraki MA, Caplan AJ (2012) Quality control and fate determination of Hsp90 client proteins. Biochim Biophys Acta 1823:683–688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wall D, Zylicz M, Georgopoulos C (1995) The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone. J Biol Chem 270:2139–2144

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KJ, Ren HY, Trepte P, Cyr DM (2013) The Hsp70/90 cochaperone, Sti1, suppresses proteotoxicity by regulating spatial quality control of amyloid-like proteins. Mol Biol Cell 24:3588–3602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolfe KJ, Ren HY, Trepte P, Cyr DM (2014) Polyglutamine-rich suppressors of huntingtin toxicity act upstream of hsp70 and sti1 in spatial quality control of amyloid-like proteins. PLoS One 9:e95914

    Article  PubMed Central  PubMed  Google Scholar 

  • Yan W, Craig EA (1999) The glycine-phenylalanine-rich region determines the specificity of the yeast Hsp40 Sis1. Mol Cell Biol 19:7751–7758

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of DMC is supported by the National Institutes of Health 5R01GM056981. CHR is supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Ministério da Ciência e Tecnologia/Conselho Nacional de Pesquisa e Desenvolvimento (MCT/CNPq), and NIH-R03TW007437 through the Fogarty International Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas M. Cyr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cyr, D., Ramos, C. (2015). Specification of Hsp70 Function by Type I and Type II Hsp40. In: Blatch, G., Edkins, A. (eds) The Networking of Chaperones by Co-chaperones. Subcellular Biochemistry, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-11731-7_4

Download citation

Publish with us

Policies and ethics