Skip to main content

Pros and Cons on Magnetic Nanoparticles Use in Biomedicine and Biotechnologies Applications

  • Chapter
  • First Online:
Nanoparticles' Promises and Risks

Abstract

In recent years, the design and synthesis of colloidal magnetic suspensions have attracted an increased interest especially in the fields of biotechnology and biomedicine because they have many applications including targeted drug delivery, cell labeling and magnetic cell separation, hyperthermia, tissue repairing, magnetic resonance imaging (MRI) contrast enhancement, enzyme immobilization, immunoassays, protein purification, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leslie Pelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8(8):1770–1783

    Google Scholar 

  2. Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley, New-York

    Google Scholar 

  3. Hadjipanayis GC, Prinz GA (1991) Science and technology of nanostructured magnetic materials. Plenum Press, New-York

    Google Scholar 

  4. Shylesh S, Schünemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49:3428–3459

    Google Scholar 

  5. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501

    Google Scholar 

  6. Jun YW, Choi JS, Cheon J (2007) Heterostructured magnetic nanoparticles: their versatility and high performance capabilities. Chem Commun 12:1203–1214

    Google Scholar 

  7. Tebble RS, Craik DJ (1969) Magnetic materials. Wiley-Interscience, London

    Google Scholar 

  8. West AR (1988) Basic solid state chemistry. Wiley, New York

    Google Scholar 

  9. O’Handley RC (2000) Modern magnetic materials—principles and applications. Wiley, New York

    Google Scholar 

  10. Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrence and uses. VCH, Weinheim, Germany

    Google Scholar 

  11. Cornell RM, Schwertmann U (1991) Iron oxides in the laboratory: preparation and characterization. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  12. Jiles D (1998) Introduction to magnetism and magnetic materials, 2nd edn. Chapman & Hall, New York

    Google Scholar 

  13. Frankel RB, Moskowitz BM (2003) In: Miller JS, Drillon M (eds) Magnetism: molecules to materials IV: nanosized magnetic materials. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  14. Bee A, Massart R, Neveu S (1995) Synthesis of very fine maghemite particles. J Magn Magn Mater 149(1–2):6–9

    Google Scholar 

  15. Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles. Chem Mater 8(9):2209–2211

    Google Scholar 

  16. Lee JW, Isobe T, Senna M (1996) Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation. Colloids Surf A Physicochem Eng Asp 109:121–127

    Google Scholar 

  17. Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225(1–2):30–36

    Google Scholar 

  18. Jolivet JP, Chaneac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 5:481–487

    Google Scholar 

  19. Si S, Kotal A, Mandal TK, Giri S, Nakamura H, Kohara T (2004) Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem Mater 16(18):3489–3496

    Google Scholar 

  20. Tartaj P, Morales MP, Gonzalez-Carreno T, Veintemillas-Verdaguer S, Serna CJ (2005) Advances in magnetic nanoparticles for biotechnology applications. J Magn Magn Mater 290:28–34

    Google Scholar 

  21. Wu W, He Q, Hu R, Huang J, Chen H (2007) Preparation and characterization of magnetite Fe3O4 nanopowders. Rare Metal Mat Eng 36(3):238–243

    Google Scholar 

  22. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller R (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108(6):2064–2110

    Google Scholar 

  23. Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121(49):11595–11596

    Google Scholar 

  24. Hyeon T, Lee SS, Park J, Chung Y, Bin NH (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801

    Google Scholar 

  25. Sun SH, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205

    Google Scholar 

  26. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 8:927–934

    Google Scholar 

  27. Sun SH, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li GX (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279

    Google Scholar 

  28. Woo K, Hong J, Choi S, Lee HW, Ahn JP, Kim CS, Lee SW (2004) Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater 16(14):2814–2818

    Google Scholar 

  29. Răileanu M, Crişan M, Petrache C, Crişan D, Zaharescu M (2003) Fe2O3-SiO2 nanocomposites obtained by different sol-gel routes. J Optoelectron Adv Mater 5(3):693–698

    Google Scholar 

  30. Ismail AA (2005) Synthesis and characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol-gel method. Appl Catal B Environ 58(1–2):115–121

    Google Scholar 

  31. Durães L, Costa BFO, Vasques J, Campos J, Portugal A (2005) Phase investigation of as-prepared iron oxide/hydroxide produced by sol-gel synthesis. Mater Lett 59(7):859–863

    Google Scholar 

  32. Dai ZF, Meiser F, Mohwald H (2005) Nanoengineering of iron oxide and iron oxide/silica hollow spheres by sequential layering combined with a sol-gel process. J Colloid Interface Sci 288(1):298–300

    Google Scholar 

  33. Hirai T, Mizumoto JY, Shiojiri S, Komasawa I (1997) Preparation of Fe oxide and composite Ti-Fe oxide ultrafine particles in reverse micellar systems. J Chem Eng Jpn 30(5):938–943

    Google Scholar 

  34. Liu C, Zou BS, Rondinone AJ, Zhang ZJ (2000) Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J Phys Chem B 104(6):1141–1145

    Google Scholar 

  35. Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan WH (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17(10):2900–2906

    Google Scholar 

  36. Yang HH, Zhang SQ, Chen XL, Zhuang ZX, Xu JG, Wang XR (2004) Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal Chem 76(5):1316–1321

    Google Scholar 

  37. Bi XX, Ganguly B, Huffman GP, Huggins FE, Endo M, Eklund PC (1993) Nanocrystalline α-Fe, Fe3C, and Fe7C3 produced by CO2-laser pyrolysis. J Mater Res 8(7):1666–1674

    Google Scholar 

  38. Hofmeister H, Huisken F, Kohn B, Alexandrescu R, Cojocaru S, Crunteanu A, Morjan I, Diamandescu L (2001) Filamentary iron nanostructures from laser-induced pyrolysis of iron pentacarbonyl and ethylene mixtures. Appl Phys Mater Sci Process 72(1):7–11

    Google Scholar 

  39. He YQ, Li XG, Swihart MT (2005) Laser-driven aerosol synthesis of nickel nanoparticles. Chem Mater 17(5):1017–1026

    Google Scholar 

  40. Leconte Y, Veintemillas-Verdaguer S, Morales MP, Costo R, Rodriguez I, Bonville P, Bouchet-Fabre B, Herlin-Boime N (2007) Continuous production of water dispersible carbon-iron nanocomposites by laser pyrolysis: application as MRI contrasts. J Colloid Interface Sci 313(2):511–518

    Google Scholar 

  41. Varma A, Lebrat JP (1992) Combustion synthesis of advanced materials. Chem Eng Sci 47(9–11):2179–2194

    Google Scholar 

  42. Patil KC, Aruna ST, Ekambaram S (1997) Combustion synthesis. Curr Opin Solid State Mater Sci 2:158–165

    Google Scholar 

  43. Mukasyan AS, Epstein P, Dinka P (2007) Solution combustion synthesis of nanomaterials. Proc Combust Inst 31(2):1789–1795

    Google Scholar 

  44. Patil KC, Hegdeg MS, Ratan T, Aruna ST (2008) Chemistry of nanocrystalline oxide materials. Combustion synthesis. Properties and applications. World Scientific, Singapore

    Google Scholar 

  45. Aruna ST, Mukasyan AS (2008) Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci 12(3–4):44–50

    Google Scholar 

  46. Ianoş R (2009) An efficient solution for the single step synthesis of 4CaO·Al2O3·Fe2O3 powders. J Mater Res 24(1):245–252

    Google Scholar 

  47. Murakami S, Hosono T, Jezadevan B, Kamitakahara M, Iouku K (2008) Hydrothermal synthesis of magnetite/hydroxyapatite composite material for hyperthermia therapy for bone cancer. J Ceram Soc Jpn 116:950–954

    Google Scholar 

  48. Giri S, Samanta S, Maji S, Ganguli S, Bhaumik A (2005) Magnetic properties of alpha-Fe2O3 nanoparticle synthesized by a new hydrothermal method. J Magn Magn Mater 285(1–2):296–302

    Google Scholar 

  49. Mao B, Kang Z, Wang E, Lian S, Gao L, Tian C, Wang C (2006) Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method. Mater Res Bull 41(12):2226–2231

    Google Scholar 

  50. Liu X, Qiu G, Yan A, Wang Z, Li X (2007) Hydrothermal synthesis and characterization of alpha-FeOOH and alpha-Fe2O3 uniform nanocrystallines. J Alloys Compd 433(1–2):216–220

    Google Scholar 

  51. Zhu H, Yang D, Zhu L (2007) Hydrothermal growth and characterization of magnetite (Fe3O4) thin films. Surf Coating Tech 201(12):5870–5874

    Google Scholar 

  52. Yang X, Jiang W, Liu L, Chen B, Wu S, Sun D, Li F (2012) One-step hydrothermal synthesis of highly water-soluble secondary structural Fe3O4 nanoparticles. J Magn Magn Mater 324:2249–2257

    Google Scholar 

  53. Kim EH, Lee HS, Kwak BK, Kim BK (2005) Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater 289:328–330

    Google Scholar 

  54. Bang JH, Suslick KS (2007) Sonochemical synthesis of nanosized hollow hematite. J Am Chem Soc 129(8):2242–2243

    Google Scholar 

  55. Teo BM, Chen F, Hatton AT, Grieser F, Ashokkumar M (2009) Novel one-pot synthesis of magnetite latex nanoparticles by ultrasound irradiation. Langmuir 25(5):2593–2595

    Google Scholar 

  56. Feng J, Mao J, Wen XG, Tu MJ (2011) Ultrasonic-assisted in situ synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J Alloys Compd 509:9093–9097

    Google Scholar 

  57. Khalafalla SE, Reimers GW (1973) Magnetofluids and their manufacture, US Patent 3764540

    Google Scholar 

  58. Boistelle R, Astier JP (1988) Crystallization mechanisms in solution. J Cryst Growth 90:14–30

    Google Scholar 

  59. Gribanov NM, Bibik EE, Buzunov OV, Naumov VN (1990) Physicochemical regularities of obtaining highly dispersed magnetite by the method of chemical condensation. J Magn Magn Mater 85(1–3):7–10

    Google Scholar 

  60. Sugimoto T (2003) Formation of monodispersed nano- and micro-particles controlled in size, shape, and internal structure. Chem Eng Tech 26(3):313–321

    Google Scholar 

  61. Schwarzer HC, Peukert W (2004) Tailoring particle size through nanoparticle precipitation. Chem Eng Comm 191(4):580–606

    Google Scholar 

  62. Liu XQ, Tao SW, Shen YS (1997) Preparation and characterization of nanocrystalline alpha-Fe2O3 by a sol-gel process. Sensor Actuator B Chem 40(2–3):161–165

    Google Scholar 

  63. Kojima K, Miyazaki M, Mizukami F, Maeda K (1997) Selective formation of spinel iron oxide in thin films by complexing agent-assisted sol-gel processing. J Sol-Gel Sci Technol 8(1–3):77–81

    Google Scholar 

  64. Gamarra LF, Brito GES, Pontuschka WM, Amaro E, Parma AHC, Goya GF (2005) Biocompatible superparamagnetic iron oxide nanoparticles used for contrast agents: a structural and magnetic study. J Magn Magn Mater 289:439–441

    Google Scholar 

  65. Răileanu M, Crişan M, Petrache C, Crişan D, Jitianu A, Zaharescu M, Predoi D, Kuncser V, Filoti G (2005) Sol-Gel FexOy-SiO2 nanocomposites. Rom J Phy 50(5–6):595–606

    Google Scholar 

  66. Bagwe RP, Kanicky JR, Palla BJ, Patanjali PK, Shah DO (2001) Improved drug delivery using microemulsions: rationale, recent progress, and new horizons. Crit Rev Ther Drug Carrier Syst 18(1):77–140

    Google Scholar 

  67. Vidal-Vidal J, Rivas J, Lopez-Quintela MA (2006) Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids Surf A Physicochem Eng Asp 288(1–3):44–51

    Google Scholar 

  68. Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J Mater Process Technol 191(1–3):235–237

    Google Scholar 

  69. Haggerty JS (1981) Controlling powder size with collimated light beam—which selectively vaporises larger particles. US Patent Number US4289952-A

    Google Scholar 

  70. Morjan I, Alexandrescu R, Dumitrache F, Birjega R, Fleacă C, Soare I et al (2010) Iron oxide-based nanoparticles with different mean sizes obtained by the laser pyrolysis: structural and magnetic properties. J Nanosci Nanotechnol 10(2):1223–1234

    Google Scholar 

  71. McKittrick J, Shea LE, Bacalski CF, Bosze EJ (1999) The influence of processing parameters on luminescent oxides produced by combustion synthesis. Displays 19(4):169–172

    Google Scholar 

  72. Garcia R, Hirata GA, McKittrick J (2001) New combustion synthesis technique for the production of (InxGa1-x)2O3 powders: hydrazine/metal nitrate method. J Mater Res 16(4):1059–1065

    Google Scholar 

  73. Mukasyan AS, Costello C, Sherlock KP, Lafarga D, Varma A (2001) Perovskite membranes by aqueous combustion synthesis: synthesis and properties. Sep Purif Technol 25(1–3):117–126

    Google Scholar 

  74. Luo XX, Cao WH, Xing MM (2006) Preparation of nano Y2O2S:Eu phosphor by ethanol assisted combustion synthesis method. J Rare Earths 24(1):20–24

    Google Scholar 

  75. Li F, Hu K, Li JL, Zhang D, Chen G (2002) Combustion synthesis of gamma-lithium aluminate by using various fuels. J Nucl Mater 300(1):82–88

    Google Scholar 

  76. Jung CH, Park JY, Oh SJ, Park HK, Kim YS, Kim DK, Kim JH (1998) Synthesis of Li2TiO3 ceramic breeder powders by the combustion process. J Nucl Mater 253:203–212

    Google Scholar 

  77. Ozuna O, Hirata GA, McKittrick J (2004) Pressure influenced combustion synthesis of gamma- and alpha-Al2O3 nanocrystalline powders. J Phys Condens Matter 16(15):2585–2591

    Google Scholar 

  78. Chen D, Xu R (1998) Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Mater Res Bull 33(7):1015–1021

    Google Scholar 

  79. Zheng YH, Cheng Y, Bao F, Wang YS (2006) Synthesis and magnetic properties of Fe3O4 nanoparticles. Mater Res Bull 41(3):525–529

    Google Scholar 

  80. Wang J, Sun JJ, Sun Q, Chen QW (2003) One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater Res Bull 38(7):1113–1118

    Google Scholar 

  81. Daou TJ, Pourroy G, Begin-Colin S, Greneche JM, Ulhaq-Bouillet C, Legare P, Bernhardt P, Leuvrey C, Rogez G (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18(18):4399–4404

    Google Scholar 

  82. Vijayakumar R, Koltypin Y, Felner I, Gedanken A (2000) Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 286(1):101–105

    Google Scholar 

  83. Pinkas J, Reichlova V, Zboril R, Moravec Z, Bezdicka P, Matejkova J (2008) Sonochemical synthesis of amorphous nanoscopic iron(III) oxide from Fe(acac)3. Ultrason Sonochem 15(3):257–264

    Google Scholar 

  84. Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik CN, Markovich G (2001) Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir 17(25):7907–7911

    Google Scholar 

  85. Vékás L, Bica D, Marinică O (2006) Magnetic nanofluids stabilized with various chain length surfactants. Rom Rep Phys 58(3):257–267

    Google Scholar 

  86. Jiang W, Wu Y, He B, Zeng X, Lai K, Gu Z (2010) Effect of sodium oleate as a buffer on the synthesis of superparamagnetic magnetite colloids. J Colloid Interface Sci 347:1–7

    Google Scholar 

  87. Mourdikoudis S, Liz-Marzán LM (2013) Oleylamine in nanoparticle synthesis. Chem Mater 25:1465–1476

    Google Scholar 

  88. Euliss LE, Grancharov SG, O’Brien S, Deming TJ, Stucky GD, Murray CB, Held GA (2003) Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media. Nano Lett 3(11):1489–1493

    Google Scholar 

  89. Liu XQ, Guan YP, Ma ZY, Liu ZH (2004) Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization. Langmuir 20(23):10278–10282

    Google Scholar 

  90. Hong R, Fischer NO, Emrick T, Rotello VM (2005) Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem Mater 17(18):4617–4621

    Google Scholar 

  91. Alsmadi NA, Wadajkar AS, Cui W, Nguyen KT (2011) Effects of surfactants on properties of polymer-coated magnetic nanoparticles for drug delivery application. J Nanopart Res 13(12):7177–7186

    Google Scholar 

  92. de Almeida MPS, Caiado KL, Sartoratto PPC, Cintra e Silva DO, Rereira AR, Morais PC (2010) Preparation and size-modulation of silica-coated maghemite nanoparticles. J Alloy Comp 500:149–152

    Google Scholar 

  93. Roca AG, Carmona D, Miguel-Sancho N, Bomati-Miguel O, Balas F, Piquer C, Santamaria J (2012) Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures. Nanotechnology 23(15):155603

    Google Scholar 

  94. Singh RK, Kim TH, Patel KD, Knowles JC, Kim HW (2012) Biocompatible magnetite nanoparticles with varying silica-coating layer for use in biomedicine: physicochemical and magnetic properties, and cellular compatibility. J Biomed Mater Res A 100(7):1734–1742

    Google Scholar 

  95. Lu AH, Schmidt W, Matoussevitch N, Bönnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schüth F (2004) Nanoengineering of a magnetically separable hydrogenation catalyst. Angew Chem Int Ed 43:4303–4306

    Google Scholar 

  96. Luo N, Liu KX, Liu ZY, Li XJ, Chen SY, Shen Y, Chen TW (2012) Controllable synthesis of carbon coated iron-based composite nanoparticles. Nanotechnology 23(47):475603

    Google Scholar 

  97. Lin J, Zhou WL, Kumbhar A, Wiemann J, Fang JY, Carpenter EE, O'Connor CJ (2001) Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field-induced self-assembly. J Solid State Chem 159(1):26–31

    Google Scholar 

  98. Mohammad F, Balaji G, Weber A, Uppu RM, Kumar CSSR (2010) Influence of gold nanoshell on hyperthermia of superparamagnetic iron oxide nanoparticles. J Phys Chem C 114(45):19194–19201

    Google Scholar 

  99. Sobal NS, Hilgendorff M, Mohwald H, Giersig M, Spasova M, Radetic T, Farle M (2002) Synthesis and structure of colloidal bimetallic nanocrystals: the non-alloying system Ag/Co. Nano Lett 2(6):621–624

    Google Scholar 

  100. Vékás L (2013) Magnetic nanofluids. Synthesis, stabilization, properties, applications. Romanian Academy Publ. House, Bucharest

    Google Scholar 

  101. Bica D (1995) Preparation of magnetic fluids for various applications. Rom Rep Phys 47(3–5):265–272

    Google Scholar 

  102. Bica D, Vékás L, Avdeev MV, Marinică O, Socoliuc V, Bălăşoiu M, Garamus VM (2007) Sterically stabilized water based magnetic fluids: synthesis, structure and properties. J Magn Magn Mater 311:17–21

    Google Scholar 

  103. Willis AL, Turro NJ, O’Brien S (2005) Spectroscopic characterization of the surface of iron oxide nanocrystals. Chem Mater 17(24):5970–5975

    Google Scholar 

  104. Fauconnier N, Bee A, Roger J, Pons JN (1996) Adsorption of gluconic and citric acids on maghemite particles in aqueous medium. Progr Colloid Polymer Sci 100:212–216

    Google Scholar 

  105. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318

    Google Scholar 

  106. Kumagai M, Imai Y, Nakamura T, Yamasaki Y, Sekino M, Ueno S, Hanaoka K, Kikuchi K, Nagano T, Kaneko E, Shimokado K, Kataoka K (2007) Iron hydroxide nanoparticles coated with poly(ethylene glycol)-poly(aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging. Colloids Surf B Biointerfaces 56(1–2):174–181

    Google Scholar 

  107. Koneracka M, Muckova M, Zavisova V, Tomasovicova N, Kopcansky P, Timko M, Jurikova A, Csach K, Kavecansky V, Lancz G (2008) Encapsulation of anticancer drug and magnetic particles in biodegradable polymer nanospheres. J Phys Condens Matter 20(20):204151

    Google Scholar 

  108. Moeser GD, Green WH, Laibinis PE, Linse P, Hatton TA (2004) Structure of polymer-stabilized magnetic fluids: small-angle neutron scattering and mean-field lattice modeling. Langmuir 20(13):5223–5234

    Google Scholar 

  109. Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160

    Google Scholar 

  110. Alcala MD, Real C (2006) Synthesis based on the wet impregnation method and characterization of iron and iron oxide-silica nanocomposites. Solid State Ion 177(9–10):955–960

    Google Scholar 

  111. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69

    Google Scholar 

  112. van Blaaderen A, Kentgens APM (1992) Particle morphology and chemical microstructure of colloidal silica spheres made from alkoxysilanes. J Non Cryst Solids 149(3):161–178

    Google Scholar 

  113. Wang H, Nakamura H, Yao K, Maeda H, Abe E (2001) Effect of solvents on the preparation of silica-coated magnetic particles. Chem Lett 11:1168–1169

    Google Scholar 

  114. Cho SJ, Idrobo JC, Olamit J, Liu K, Browning ND, Kauzlarich SM (2005) Growth mechanisms and oxidation resistance of gold-coated iron nanoparticles. Chem Mater 17(12):3181–3186

    Google Scholar 

  115. Wang LY, Luo J, Maye MM, Fan Q, Qiang RD, Engelhard MH, Wang CM, Lin YH, Zhong CJ (2005) Iron oxide-gold core-shell nanoparticles and thin film assembly. J Mater Chem 15(18):1821–1832

    Google Scholar 

  116. Căruntu D, Cushing BL, Căruntu G, O’Connor CJ (2005) Attachment of gold nanograins onto colloidal magnetite nanocrystals. Chem Mater 17(13):3398–3402

    Google Scholar 

  117. Chan HBS, Ellis BL, Sharma HL, Frost W, Caps V, Shields RA, Tsang SC (2004) Carbon-encapsulated radioactive Tc-99m nanoparticles. Adv Mater 16(2):144–149

    Google Scholar 

  118. Rosensweig RE (1989) Magnetic fluids: phenomena and process applications. Chem Eng Progr 85(4):53–61

    Google Scholar 

  119. Raj K, Moskowitz B, Casciari R (1995) Advances in ferrofluid technology. J Magn Magn Mater 149(1–2):174–180

    Google Scholar 

  120. Vékás L (2009) Ferrofluids and magnetorheological fluids. Adv Sci Technol 54:127–136

    Google Scholar 

  121. Raj K, Moskowitz B (1990) Commercial applications of ferrofluids. J Magn Magn Mater 85(1–3):233–245

    Google Scholar 

  122. Todorovic M, Schultz S, Wong J, Scherer A (1999) Writing and reading of single magnetic domain per bit perpendicular patterned media. Appl Phys Lett 74(17):2516–2518

    Google Scholar 

  123. Blums E (1995) Some new problems of complex thermomagnetic and diffusion-driven convection in magnetic colloids. J Magn Magn Mater 149(1–2):111–115

    Google Scholar 

  124. Philip J, Rao CB, Jayakumar T, Raj B (2000) A new optical technique for detection of defects in ferromagnetic materials and components. NDT Int 33(5):289–295

    Google Scholar 

  125. Philip J, Jaykumar T, Kalyanasundaram P, Raj B (2003) A tunable optical filter. Meas Sci Tech 14(8):1289–1294

    Google Scholar 

  126. Chiba D, Yamanouchi M, Matsukura F, Ohno H (2003) Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301(5635):943–945

    Google Scholar 

  127. Tartaj P, Morales MP, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182–R197

    Google Scholar 

  128. Pankhurst QA (2006) Nanomagnetic medical sensors and treatment methodologies. BT Technol J 24(3):33–38

    Google Scholar 

  129. Villanueva A, Cañete M, Roca AG, Calero M, Veintemillas-Verdaguer S, Serna CJ, Morales MP, Miranda R (2009) The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 20(11):115103

    Google Scholar 

  130. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1–2):24–46

    Google Scholar 

  131. Safarikova M, Safarik I (1999) Magnetic solid-phase extraction. J Magn Magn Mater 194(1–3):108–112

    Google Scholar 

  132. Shinkai M (2002) Functional magnetic particles for medical application. J Biosci Bioeng 94(6):606–613

    Google Scholar 

  133. Yoza B, Matsumoto M, Matsunaga T (2002) DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J Biotechnol 94(3):217–224

    Google Scholar 

  134. Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641):1884–1886

    Google Scholar 

  135. Rheinländer T, Kötitz R, Weitschies W, Semmler W (2000) Magnetic fractionation of magnetic fluids. J Magn Magn Mater 219(2):219–228

    Google Scholar 

  136. Romanus E, Huckel M, Gross C, Prass S, Weitschies W, Brauer R, Weber P (2002) Magnetic nanoparticle relaxation measurement as a novel tool for in vivo diagnostics. J Magn Magn Mater 252(1–3):387–389

    Google Scholar 

  137. Kim KW, Ha HK (2003) MRI for small bowel diseases. Semin Ultrasound CT MRI 24(5):387–402

    Google Scholar 

  138. Richardson JC, Bowtell RW, Mader K, Melia CD (2005) Pharmaceutical applications of magnetic resonance imaging (MRI). Adv Drug Deliv Rev 57(8):1191–1209

    Google Scholar 

  139. Coroiu I (1999) Relaxivities of different superparamagnetic particles for application in NMR tomography. J Magn Magn Mater 201:449–452

    Google Scholar 

  140. Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212(2):474–482

    Google Scholar 

  141. Kim DK, Zhang Y, Kehr J, Klason T, Bjelke B, Muhammed M (2001) Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J Magn Magn Mater 225(1–2):256–261

    Google Scholar 

  142. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499

    Google Scholar 

  143. Bjornerud A, Johansson L (2004) The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR Biomed 17(7):465–477

    Google Scholar 

  144. Jordan A, Scholz R, Wust P, Fahling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419

    Google Scholar 

  145. Andra W, d’Ambly CG, Hergt R, Hilger I, Kaiser WA (1999) Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J Magn Magn Mater 194(1–3):197–203

    Google Scholar 

  146. Hilger I, Hergt R, Kaiser WA (2000) Effects of magnetic thermoablation in muscle tissue using iron oxide particles—an in vitro study. Invest Radiol 35(3):170–179

    Google Scholar 

  147. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3(8):487–497

    Google Scholar 

  148. Pardoe H, Clark PR, St Pierre TG, Moroz P, Jones SK (2003) A magnetic resonance imaging based method for measurement of tissue iron concentration in liver arterially embolized with ferrimagnetic particles designed for magnetic hyperthermia treatment of tumors. Magn Reson Imaging 21(5):483–488

    Google Scholar 

  149. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14(14):2161–2175

    Google Scholar 

  150. Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K et al (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56(20):4686–4693

    Google Scholar 

  151. Bonadonna G, Gianni L, Santoro A, Bonfante V, Bidoli P, Casali P, Demicheli R, Valagussa P (1993) Drugs 10 years later—epirubicin. Ann Oncol 4(5):359–369

    Google Scholar 

  152. Lübbe AS, Bergemann C, Brock J, McClure DG (1999) Physiological aspects in magnetic drug-targeting. J Magn Magn Mater 194(1–3):149–155

    Google Scholar 

  153. Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38(9):2532–2542

    Google Scholar 

Download references

Acknowledgements

We would like to thank Alina Tăculescu, PhD; Robert Ianoș, PhD; and Prof. Cornelia Păcurariu, PhD, Politehnica University Timisoara, for their remarkable contribution in characterization and synthesis of MNPs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florina M. Bojin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bojin, F.M., Paunescu, V. (2015). Pros and Cons on Magnetic Nanoparticles Use in Biomedicine and Biotechnologies Applications. In: Lungu, M., Neculae, A., Bunoiu, M., Biris, C. (eds) Nanoparticles' Promises and Risks. Springer, Cham. https://doi.org/10.1007/978-3-319-11728-7_7

Download citation

Publish with us

Policies and ethics