Skip to main content

Mechanisms of Nanoparticle Formation and Reformation in the Atmosphere

  • Chapter
  • First Online:
Nanoparticles' Promises and Risks

Abstract

Several relevant models of nanoparticle formation and reformation in the atmosphere are underlined: the mechanism of forming fine ash particles in coal-fired thermal power plants; carbon particulates formed either directly or through partial oxidation intermediates; acid rain, bases, ammonia, saline or oxide particulates formation mechanism. For solid or liquid particulate matter of organic nature present in the atmosphere, the phases of the partial oxidation of organic compounds and the dioxin and furan generation in various combustion systems are presented. The mechanism of reforming these compounds from flue gas through de novo syntheses initiated through the conversion of carbon dioxide into formose is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith KR, Veranth JM et al (2006) Acute pulmonary and systemic effects of inhaled coal fly ash in rats: comparison to ambient environmental particles. Toxicol Sci 93:390–399

    Article  Google Scholar 

  2. Hurley MD, Ball JC et al (2007) Atmospheric chemistry of a model biodiesel fuel, CH3C(O)O(CH2)2OC(O)CH3: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NOx. J Phys Chem 11:2547–2554

    Article  Google Scholar 

  3. Ehhalt DH (1987) Free radicals in the atmosphere. Free Radic Res Commun 3(1–5):153–164

    Article  Google Scholar 

  4. Monks PS (2005) Gas-phase radical chemistry in the troposphere. Chem Soc Rev 34:376–395

    Article  Google Scholar 

  5. McElroy MB, Salawitch RJ et al (1992) The changing stratosphere. Planet Space Sci 40:373–401

    Article  Google Scholar 

  6. Bureau H, Keppler H et al (2000) Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemistry. Earth Planet Sci Lett 183:51–60

    Article  Google Scholar 

  7. Hara H (2014) Mechanism of acid deposition. EANET Rev. 16 Apr 2014

    Google Scholar 

  8. Goodie AS, Middleton NJ (2001) Earth Sci Rev 56:179–204

    Article  Google Scholar 

  9. SEPA (2014) Scottish pollutant release inventory rep. Threshold, Edinburg

    Google Scholar 

  10. Nielsen OG et al (2007) Atmospheric chemistry of CF3CF=CH2: kinetics and mechanisms of gas-phase reaction with Cl atoms, OH radicals and O3. Chem Phys Lett 439:18–22

    Article  Google Scholar 

  11. Atmospheric ammonia: sources and fate (2000). US EPA AQRS Meet. Rep

    Google Scholar 

  12. Mulu AK et al (2013) Photooxidation of ammonia on TiO2 as a source of NO and NO2 under atmospheric conditions. J Am Chem Soc 135:8606–8615

    Article  Google Scholar 

  13. Schuur EAG (2011) Ecology: nitrogen from the deep. Nature 477:39

    Article  Google Scholar 

  14. Galloway JN et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  Google Scholar 

  15. Renard JJ, Calidonna SE et al (2004) Fate of ammonia in the atmosphere–a review for applicability to hazardous releases. J Hazard Mater 108:29–60

    Article  Google Scholar 

  16. Strâmbeanu N, Demetrovici L et al (2009) Comparative calculation of incineration costs at 3,500 tons/year and 22,000 tons/ years capacity. Int. Symp. Env. Ind, III, 66, Bucharest, 28–30 October 2009

    Google Scholar 

  17. Lungu M, Strâmbeanu N et al (2011) Some consideration on the nanoparticles manipulation in fluid media using dielectrophoresis. Rom J Phys 11:103

    Google Scholar 

  18. Lungu M, Strâmbeanu N et al (2012) Reduction of nanoparticle emission by electrohydrodynamic filtering of residual combustion gases. International conference ANMBES 2012, 107. Transilvania University of Brasov, Romania, 24–27 May 2012

    Google Scholar 

  19. Strâmbeanu N (2007) Criterii de evaluare a potenţialului energetic şi de risc ecologic în procesul incinerării deşeurilor speciale şi toxice. Bul AGIR 3:67

    Google Scholar 

  20. Csunderlik, C, Medeleanu, M (2014) Reacțiile compuşilor organici, Facultatea de Chimie Industrială si Inginerie a Mediului din Timişoara (PP)

    Google Scholar 

  21. Strâmbeanu N, Pode V (2006) sa, Mecanisme probabile de formare a dioxinelor în procesul arderilor controlate şi necontrolate. Revista Română de Chimie 8: 36

    Google Scholar 

  22. Strâmbeanu N (2006) Modele ipotetice ale formării-reformării dioxinelor în procesul incinerării deşeurilor speciale. Bul AGIR 1–2:177

    Google Scholar 

  23. Strâmbeanu N, Demetrovici L (2008) sa, Evaluarea energetică a deşeurilor toxice supuse incinerarii, Simp ARS, Sinaia 14–15 Apr 2008

    Google Scholar 

  24. Santoleri E et al (2000) Introduction to Hazardous Waste Incineration, 2nd edn. Wiley, New York

    Google Scholar 

  25. Convenţia de la Stockholm, obiective cheie, măsuri, instrumente şi acţiuni ale Planului Naţional de Implementare în România, Bucureşti, 2003

    Google Scholar 

  26. Mc Kay G (2002) Dioxin characterization, formation and minimization during municipal solid waste (MSW) incineration: review. Chem Eng J 86:343–368

    Article  Google Scholar 

  27. Winneke G, Ranft U (2014) Behavioral sexual dimorphism in school-age children and early developmental exposure to dioxins and PCBs: a follow-up study of the Duisburg cohort. EHP Rev

    Google Scholar 

  28. Fiedler H et al (2003) Persistent organic pollutants. Springer, Berlin

    Book  Google Scholar 

  29. Craig PG et al (2003) Organometallic compounds in the environment, 2nd edn. Wiley, Leicester

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolae Strambeanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Strambeanu, N., Demetrovici, L., Dragos, D. (2015). Mechanisms of Nanoparticle Formation and Reformation in the Atmosphere. In: Lungu, M., Neculae, A., Bunoiu, M., Biris, C. (eds) Nanoparticles' Promises and Risks. Springer, Cham. https://doi.org/10.1007/978-3-319-11728-7_4

Download citation

Publish with us

Policies and ethics