Skip to main content

Natural Sources of Nanoparticles

  • Chapter
  • First Online:
Nanoparticles' Promises and Risks

Abstract

This chapter deals with the major natural sources of nanoparticles in the atmosphere: volcanic eruptions, desert surfaces, dust from cosmic sources located in the solar system or outside it. Details are given about the composition of very fine particles according to their type, the successive or parallel chemical transformations that can occur among them or when they meet the major components of the atmosphere (nitrogen, oxygen, carbon dioxide). The authors specify possible ways of evolution from the mineral kingdom to organic substances through nanoparticles originating from cosmic dust, based on suppositions that are provided in the literature of the field and accepted based on physical and chemical computational models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aber JS (2006) Climatic controls of glaciations. ES 331/767 Ice age environments. Emporia State University, Kansas, USA. Course web site: http://academic.emporia.edu/aberjame/ice/icehome.html

  2. Mandia A. Scott (2005) Possible causes for climate change, Smithtown Sciences Bldg

    Google Scholar 

  3. Houghton JT, Ding Y (2002) Climate change 2001: the scientific basis. IPCC. Int J Climatol 22(9):1144. http://onlinelibrary.wiley.com/doi/10.1002/joc.v22:9/issuetoc

    Google Scholar 

  4. Jones PD, Mann ME (2004) Climate over past millennia. Rev Geophys 45(2). http://onlinelibrary.wiley.com/doi/10.1002/rog.v42.2/issuetoc

  5. Garrett C (1997) Volcanoes and climate change. http://tiger.chm.bris.ac.uk/

  6. Robock A (1979) The little ice age: northern hemisphere average observations and model calculations. Science 206:1402–1404

    Article  Google Scholar 

  7. Weber G (2005) Toba volcano, The Andaman Association

    Google Scholar 

  8. Gasperini L, Bonatti E, Longo G (2007) 100 years later, Tunguska remains mysterious. Terra Nova 19(4):245–251

    Article  Google Scholar 

  9. Morgan J, Ranero CR et al (2004) Contemporaneous mass extinctions, continental flood basalts, and ‘impact signals’: are mantle plume-induced lithospheric gas explosions the causal link? Earth Planet Sci Lett 217:263–284

    Article  Google Scholar 

  10. Yu A (2003) Ol’khovatov. Earth, moon and planets 93:163–173

    Article  Google Scholar 

  11. Rubtsov V (2009) The Tunguska mystery. Springer, New York, NY

    Book  Google Scholar 

  12. Verma S (2005) The Tunguska fireball: solving one of the great mysteries of the 20th century. Icon Books, Cambridge

    Google Scholar 

  13. Verma S (2006) The mystery of the Tunguska fireball. Icon Books, Cambridge

    Google Scholar 

  14. Las Heras A (2008) Enigma Tunguska. Editura Litera Internaţional, Bucureşti

    Google Scholar 

  15. Eather RH (1980) Majestic lights: the aurora in science, history, and the arts. American Geophysical Union, Washington, DC

    Book  Google Scholar 

  16. Savage C (2001) Aurora: the mysterious northern lights. Sierra Club Books/Firefly Books, San Francisco, CA

    Google Scholar 

  17. Juravle D (2012) Geologia României, vol 1. Editura Universitatăţii, Iaşi

    Google Scholar 

  18. Symonds RB, Rose WI et al (1994) Volcanic gas studies: methods, results and applications. Rev Mineral 30:1–66

    Google Scholar 

  19. Symonds RB, Rose WI et al (1988) Contribution of Cl- and F-bearing gases to the atmosphere by volcanoes. Nature 334:415–418

    Article  Google Scholar 

  20. Cadle RD (1980) A comparison of volcanic with other fluxes of atmospheric trace gas constituents. Rev Geophys Space Phys 18:746–752

    Article  Google Scholar 

  21. Chin M, Davis DD (1993) Global sources and sinks of OCS and CS2 and their distributions. Global Biogeochem Cycles 7:321–337

    Article  Google Scholar 

  22. McElroy MB, Salawitch RJ et al (1992) The changing stratosphere. Planet Space Sci 40:373–401

    Article  Google Scholar 

  23. Bureau H, Keppler H et al (2000) Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemistry. Earth Planet Sci Lett 183:51–60

    Article  Google Scholar 

  24. Textor C, Graf HF, Timmreck C, Robock A (2003) Emissions from volcanoes (chapter 7). In: Granier C, Reeves C, Artaxo P (eds) Emissions of chemical compounds and aerosols in the atmosphere. Kluwer, Dordrecht

    Google Scholar 

  25. Tungsheng L, Xiongfei G et al (1981) Desert dust: origin, characteristics, and effect on man. Geological Soc Am 186:149–157

    Article  Google Scholar 

  26. Shi Z, Shao L, Jones T, Lu S (2005) Microscopy and mineralogy of airborne particles collected during severe dust storm episodes in Beijing, China. J Geophys Res. p 301

    Google Scholar 

  27. USA today, 18361–18370, Sept 19 2005

    Google Scholar 

  28. Husar RB (2001) The Asian dust events of April 1998. J Geophys Res 2001:233–243

    Google Scholar 

  29. Buseck PR, Pósfai M (1999) Airborne minerals and related aerosol particles: effects on climate and the environment. Proc Nat Acad Sci 96:3372–3379

    Article  Google Scholar 

  30. Taylor DA (2002) Dust in the wind. Environ Health Perspect 110(2):A80–A87, http://www.ncbi.nlm.nih.gov/pubmed/?term=Taylor%20DA%5Bauth%5D

    Article  Google Scholar 

  31. Du Xiaodan (2007) Northern dust brings dirty skies in Shanghai. J Geophys Res

    Google Scholar 

  32. Chun Y, Cho H et al (2008) Historical records of Asian dust events (Hwangsa) in Korea. Bull Am Meteorol Soc 89:823–827

    Article  Google Scholar 

  33. Wang GH, Zhou CB et al (2012) Atmos Chem Phys Discuss 12:21355–21397

    Article  Google Scholar 

  34. Marconi M, Sferlazzo DM et al (2013) Saharan dust aerosol over the central mediterranean sea: optical columnar measurements vs. aerosol load, chemical composition and marker solubility at ground level. Atmos Chem Phys Discuss 13:21259–21299

    Article  Google Scholar 

  35. Formenti P, Elbert WJ (2003) J Geophys Res Atmos 108

    Google Scholar 

  36. Goudie AS, Middleton NJ (2001) Earth Sci Rev 56:179–204

    Article  Google Scholar 

  37. Zook HA (2001) Accretion of extraterrestrial matter throughout Earth’s history. pp 75–92

    Google Scholar 

  38. Outreach site of Herschel Space Observatory. http://sci.esa.int/herschel/

  39. Love SG, Joswiak DJ et al (1992) Densities of stratospheric micrometeorites. Icarus 111:227–236

    Article  Google Scholar 

  40. Humphreys W, Roberta M et al (1972) Spectroscopic and photometric observations of M Supergiants in Carina. Astrophys J 172:75

    Article  Google Scholar 

  41. Donald D, Clayton W et al (1999) Condensation of carbon in radioactive supernova gas. Science 283:1290–1292

    Article  Google Scholar 

  42. Donald D, Clayton W (2011) A new astronomy with radioactivity: radiogenic carbon chemistry. New Astronomy Rev 55:155–165

    Article  Google Scholar 

  43. Starkey N (2013) Insight into the silicate and organic reservoirs of the comet forming region. Gnocchi et Cosmochim Acta 105:73–91

    Article  Google Scholar 

  44. Kwok S, Zhang Y (2011) Mixed aromatic: aliphatic organic nanoparticles as carriers of unidentified infrared emission features. Nature 479:80–83

    Article  Google Scholar 

  45. Moskowitz C (2012) Life’s building blocks may have formed in dust around young sun. Space.com

    Google Scholar 

  46. Gudipati MS, Yang R (2012) In-situ probing of radiation-induced processing of organics in astrophysical ice analogs: novel laser desorption laser ionization time-of-flight mass spectroscopic studies. Astrophys J Lett 756(1). http://iopscience.iop.org/2041-8205/756

  47. Hoover R (2014) Need to track organic nano-particles across the universe? NASA’s got an app for that. http://www.nasa.gov/ames/need-to-track-organic-nano-particles-across-the-universe-nasas-got-an-app-for-that/#.VC2hdmeSzSs

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolae Strambeanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Strambeanu, N., Demetrovici, L., Dragos, D. (2015). Natural Sources of Nanoparticles. In: Lungu, M., Neculae, A., Bunoiu, M., Biris, C. (eds) Nanoparticles' Promises and Risks. Springer, Cham. https://doi.org/10.1007/978-3-319-11728-7_2

Download citation

Publish with us

Policies and ethics