Skip to main content

Tailored Bio-Polysaccharide Nanomicelles for Targeted Drug Delivery

  • Chapter
  • First Online:
  • 1648 Accesses

Abstract

For poorly water-soluble drugs, the dissolution time in the gastrointestinal contents may be longer than the transit time to the intended absorptive sites. Therefore, dissolution of drugs is quite often the rate-limiting step for drug absorption. This poses a major challenge for effective oral delivery of poorly soluble drugs. Recently, polymeric micelles composed of amphiphilic block or grafted copolymers have shown much advantage in drug delivery systems and attracted lots of interest due to its solubilization, low toxicity, long circulation, and passive targeting against tumor. Generally, amphiphilic copolymers can self-assemble to form nanosized spherical structures (10–200 nm) consisting of hydrophobic inner core and hydrophilic outer shell in aqueous medium. The hydrophobic cores can be used to entrap hydrophobic drugs, and release them in a controlled manner at a later stage, while the hydrophilic shell provides stabilization for the micelles with no need of additional stabilizers. Furthermore, the hydrophilic shell can be modified to have desirable properties, such as evading scavenging by the mononuclear phagocyte system (MPS) or obtaining active targeting. Natural polysaccharides are nontoxic, biodegradable, and easily amenable to chemical modifications to have better materials for drug delivery applications. In most of cases, a number of synthetic polymers have been investigated for their drug solubilizing capacity, loading efficiency, improved bioavailability, and targeting efficiency. However, the reports on natural polymer-based amphiphilic copolymer are limited in the literature. The purpose of this chapter is to illustrate recent advancements in the field of polymeric micelles emphasizing tailored bio-polysaccharide based micellar carrier systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Thompson D, Chaubal MV (2000) Cyclodextrins (CDS)-excipients by definition, drug delivery systems by function (Part I: Injectable applications). Drug Deliv Technol 2:34–38

    Google Scholar 

  2. Shabner BA, Collings JM (1990) Cancer chemotherapy. In: Principles and practice. Humana Press, Philadelphia, PA

    Google Scholar 

  3. Okada J, Cohen S et al (1995) In vitro evaluation of polymerized liposomes as an oral drug delivery system. Pharm Res 12:576–582

    Article  Google Scholar 

  4. Toorisaka E, Ono H et al (2003) Hypoglycemic effect of surfactant-coated insulin solubilized in a novel solid-in-oil-in-water (S/O/W) emulsion. Int J Pharm 252:271–274

    Article  Google Scholar 

  5. Uchida M, Kato Y et al (2000) Involvement of nitric oxide from nerves on diarrhea induced by castor oil in rats. Jpn J Pharmacol 82:168–170

    Article  Google Scholar 

  6. Ray R, Kibbe AH et al (2003) Handbook of pharmaceutical excipients. APhA Publications, Washington, DC

    Google Scholar 

  7. Rosen MJ (2004) Surfactants and interfacial phenomena. Wiley Interscience, New York, NY

    Book  Google Scholar 

  8. Kim S-C, Chang E-O et al. (2001) Biodegradable polymeric micelle-type drug composition and method for the preparation thereof. US Patent 6322805B1

    Google Scholar 

  9. Yokogawa K, Nakashima E et al (1990) Relationships in the structure-tissue distribution of basic drugs in the rabbit. Pharm Res 7:691–696

    Article  Google Scholar 

  10. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249

    Article  Google Scholar 

  11. Horter D, Dressman JB (2001) Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv 46:75–87

    Article  Google Scholar 

  12. Fernandez AM, Van Derpoorten K et al (2001) N-Succinyl-(beta-alanyl-Lleucyl-L-alanyl-L-leucyl) doxorubicin: an extracellularly tumor-activated prodrug devoid of intravenous acute toxicity. J Med Chem 44:3750–3753

    Article  Google Scholar 

  13. Torchilin VP, Trubetskoy VS (1995) Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 16:141–155

    Article  Google Scholar 

  14. Maeda H, Wu J et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Cont Rel 65:271–284

    Article  Google Scholar 

  15. Torchilin VP (1998) Polymer-coated long-circulating microparticular pharmaceuticals. J Microencapsul 15:1–19

    Article  Google Scholar 

  16. Gref R, Minamitake J et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  Google Scholar 

  17. Lukyanov AN, Torchilin VP (2004) Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 56:1273–1289

    Article  Google Scholar 

  18. Francis MF, Cristea M et al (2004) Polymeric micelles for oral drug delivery: why and how. Pure Appl Chem 76:1321–1335

    Article  Google Scholar 

  19. Torchilin VP (2004) Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 61:2549–2559

    Article  Google Scholar 

  20. Gaucher G, Dufresne MH et al (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Cont Rel 109:169–188

    Article  Google Scholar 

  21. Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648

    Article  Google Scholar 

  22. Kedar U, Phutane P et al (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed Nanotechnol Biol Med 6:714–729

    Article  Google Scholar 

  23. Martin A, Bustamante P et al (2001) Interfacial phenomena. In: Physical pharmacy-physical chemical principles in the pharmaceutical sciences. Lippincott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  24. Kataoka K, Kwon GS et al (1993) Block-copolymer micelles as vehicles for drug delivery. J Cont Rel 24:119–132

    Article  Google Scholar 

  25. Kabanov AV, Batrakova EV et al (1992) A new class of drug carriers; micelles poly(oxyethylene)-poly(oxypropylene) block copolymers as microcontainers for drug targeting from blood to brain. J Cont Rel 22:141–158

    Article  Google Scholar 

  26. Jones M, Leroux J (1999) Polymeric micelles – a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48:101–111

    Article  Google Scholar 

  27. Andrianov AK, Payne LG (1998) Polymeric carriers for oral uptake of microparticulates. Adv Drug Deliv Rev 34:155–170

    Article  Google Scholar 

  28. Kwon GS, Okano T (1996) Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 21:107–116

    Article  Google Scholar 

  29. Kwon GS (2002) Block copolymer micelles as drug delivery systems. Adv Drug Deliv Rev 54:167

    Article  Google Scholar 

  30. Adams ML, Lavasanifar A et al (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92:1343–1355

    Article  Google Scholar 

  31. Otsuka H, Nagasaki Y et al (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419

    Article  Google Scholar 

  32. Yokoyama M, Sakurai Y et al. (1996) Physical trapping type polymeric micelle drug preparation. US Patent 5510103

    Google Scholar 

  33. Taillefer J, Jones MC et al (2000) Preparation and characterization of pH-responsive polymeric micelles for the delivery of photosensitizing anticancer drugs. J Pharm Sci 89:52–62

    Article  Google Scholar 

  34. Zhiang J, Wu M et al (2009) Anionic poly (lactic acid)-polyurethane micelles as potential biodegradable drug delivery carriers. Colloids Surf A Physicochem Eng Asp 337:200–204

    Article  Google Scholar 

  35. Dufresne MH, Fournier E et al (2003) Block copolymer micelles-engineering versatile carriers for drugs and biomacromolecules. In: Gurny R (ed) Challenges in drug delivery for the new millennium. Bulletin Technique Gattefosse, Saint-Priest

    Google Scholar 

  36. Kumar V, Banker GS (2002) (2002) Target-oriented drug-delivery systems. In: Banger GS, Rhodes CT (eds) Modern pharmaceutics. Marcel Dekker, New York, NY

    Google Scholar 

  37. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    Article  Google Scholar 

  38. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature, the key role of tumor selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  Google Scholar 

  39. Matsumura Y (2001) Drug delivery systems in cancer chemotherapy. In: Chiellini E, Sunamato J (eds) Biomedical polymers and polymer therapeutics. Springer, Berlin

    Google Scholar 

  40. Maeda H, Sawa T et al (2001) Mechanism of tumor targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Cont Rel 74:47–61

    Article  Google Scholar 

  41. Yuan F, Delian M et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cut off size. Cancer Res 55:3752–3756

    Google Scholar 

  42. Dvorak HF, Brown LF et al (1995) Vascular permeability factor/vascular endothelial growth factors, microvascular hyperpermeability and angiogenesis. Am J Pathol 146:1029–1039

    Google Scholar 

  43. Feng D, Nagy JA et al (1999) Pathways of macromolecular extravasation across microvascular endothelium in response to VPF/VEGF and other vasoactive mediators. Microcirculation 6:23–44

    Article  Google Scholar 

  44. Kabanov AV, Batrakova EV et al (2002) Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Cont Rel 82:189–212

    Article  Google Scholar 

  45. Iakaubov LZ, Torchillin VP (1997) A novel class of anti-tumor antibodies: nucleosome restricted antinuclear autoantibodies (ANA) from healthy aged non-auto-immune mice. Oncol Res 9:439–446

    Google Scholar 

  46. Vinogradov S, Batrakova E et al (1999) Polyion complex micelles with protein-modified corona for receptor mediated delivery of oligonucleotides into cells. Bioconjug Chem 10:851–860

    Article  Google Scholar 

  47. Jule E, Nagasaki Y et al (2002) Surface plasmon resonance study on the interaction between lactose-installed poly (ethylene glycol)–poly (d, l-lactide) block copolymer micelles and lectins immobilized on a gold surface. Langmuir 18:10334–10339

    Article  Google Scholar 

  48. Illum L, Davis SS (1985) Passive and active targeting using colloidal carrier systems. In: Buri P, Gumma A (eds) Drug targeting. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  49. Nagasaki Y, Yasugi K et al (2001) Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules 2:1067–1070

    Article  Google Scholar 

  50. Leamon CP, Weigl D et al (1999) Folate copolymer-mediated transfection of cultured cells. Bioconj Chem 10:947–957

    Article  Google Scholar 

  51. Jule E, Nagasaki Y et al (2003) Lactose-installed poly (ethylene glycol)-poly (d, l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface: a surface plasmon resonance study. Bioconj Chem 14:177–186

    Article  Google Scholar 

  52. Bae Y, Jang WD et al (2005) Multifunctional polymeric micelles with folate mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst 1:241–250

    Article  Google Scholar 

  53. Campbell IG, Jones TA et al (1991) Folate-binding protein is a marker for ovarian cancer. Cancer Res 51:5329–5338

    Google Scholar 

  54. Weitman SD, Lark RH et al (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52:3396–3401

    Google Scholar 

  55. Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptors. Adv Drug Deliv Rev 41:147–162

    Article  Google Scholar 

  56. Elliott RL, Elliott MC et al (1993) Breast carcinoma and the role of iron metabolism: a cytochemical, tissue culture and ultrastructural study. Ann N Y Acad Sci 698:159–166

    Article  Google Scholar 

  57. Sahoo SK, Labhesetwar V (2005) Enhanced anti-proliferative activity of transferrin conjugated paclitaxel-loaded nanoparticle is mediated via sustained intracellular drug retention. Mol Pharm 2:373–383

    Article  Google Scholar 

  58. Lee ES, Na K et al (2003) Polymeric micelle for tumor pH and folate-mediated targeting. J Cont Rel 91:103–113

    Article  Google Scholar 

  59. Lee AL, Yong W et al (2009) The co-delivery of paclitaxel and Herceptin using cationic micellar nanoparticles. Biomaterials 30:919–927

    Article  Google Scholar 

  60. Gao ZG, Lee DH et al (2005) Doxorubicin loaded pH-sensitive micelles targeting acidic extracellular pH of human ovarian A2780 tumor in mice. J Drug Target 13:391–397

    Article  Google Scholar 

  61. Rijcken CJ, Snel CJ et al (2007) Hydrolysable core-crosslinked thermosensitive polymeric micelles: synthesis, characterisation and in vivo studies. Biomaterials 28:5581–5593

    Article  Google Scholar 

  62. Sershen SR, Westcott SL et al (2000) Temperature-sensitive polymer nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res 51:293–296

    Article  Google Scholar 

  63. Kato N, Oishi A et al (1998) Enzyme reaction controlled by magnetic heating due to the hysteresis loss of γ-FeO in thermosensitive polymer gels immobilized β-galactosidase. Mater Sci Eng C 6:291–296

    Article  Google Scholar 

  64. Hovgaard L, Brondsted H (1996) Current applications of polysaccharides in colon targeting. Crit Rev Ther Drug Carrier Syst 13:185–223

    Article  Google Scholar 

  65. Izumi Y, Kikuta N et al (1996) Phase diagrams and molecular structures of sodium-salt-type gellan gum. Carbohydr Polym 30:121–127

    Article  Google Scholar 

  66. Maiti S, Chakravorty A et al (2014) Gellan co-polysaccharide micellar solution of budesonide for allergic anti-rhinitis: an in vitro appraisal. Int J Biol Macromol 68:241–246

    Article  Google Scholar 

  67. Sinha VR, Kumria R (2001) Polysaccharides in colon-specific drug delivery. Int J Pharm 224:19–38

    Article  Google Scholar 

  68. Francis MF, Cristea M et al (2005) Engineering polysaccharide-based polymeric micelles to enhance permeability of cyclosporin A across Caco-2 cells. Pharm Res 22:209–219

    Article  Google Scholar 

  69. Felt O, Buri P et al (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24:979–993

    Article  Google Scholar 

  70. Mourya VK, Inamdar NN (2009) Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med 20:1057–1079

    Article  Google Scholar 

  71. Vasnev VA, Tarasov AI et al (2006) Synthesis and properties of acylated chitin and chitosan derivatives. Carbohydr Polym 64:184–189

    Article  Google Scholar 

  72. Chen X, Ding S et al (2008) Synthesis of novel chitosan derivatives for micellar solubilization of cyclosporine A. J Bioactive Compatib Polym 23:563–578

    Article  Google Scholar 

  73. Jeong Y-IL, Seo D-H et al (2009) Methotrexate-incorporated polymeric micelles composed of methoxy poly (ethylene glycol)-grafted chitosan. Macromol Res 17:538–543

    Article  Google Scholar 

  74. You J, Hu FQ et al (2007) Polymeric micelles with glycolipid-like structure and multiple hydrophobic domains for mediating molecular-target delivery of PTX. Biomacromolecules 8:2450–2456

    Article  Google Scholar 

  75. Li X, You J et al (2008) Preparation and characteristics of stearic acid grafted chitosan oligosaccharide polymeric micelle containing 10-hydroxycamptothecin. Asian J Pharm Sci 3:80–87

    Article  Google Scholar 

  76. Parvathya KS, Susheelamma NS et al (2005) A simple non-aqueous method for carboxymethylation of galactomannans. Carbohydr Polym 62:137–141

    Article  Google Scholar 

  77. Maiti S, Ray S et al (2007) Carboxymethyl xanthan microparticles as a carrier for protein delivery. J Microencapsul 24:743–756

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabyasachi Maiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maiti, S. (2015). Tailored Bio-Polysaccharide Nanomicelles for Targeted Drug Delivery. In: Lungu, M., Neculae, A., Bunoiu, M., Biris, C. (eds) Nanoparticles' Promises and Risks. Springer, Cham. https://doi.org/10.1007/978-3-319-11728-7_16

Download citation

Publish with us

Policies and ethics