Skip to main content

Multi-dimensional Electrophoresis: The March in Pharma Applications

  • Chapter
  • First Online:
  • 1661 Accesses

Abstract

Electrophoresis is widely used in pharmaceutical field for multiple applications. It is mainly employed for protein separation and identification. The information obtained on protein content and composition from multiple gel electrophoresis provides basic knowledge required for drug design, biomarker, vaccine, and antibiotic research. Furthermore, combination with advance analytical techniques like MALDI-TOF, mass spectroscopy provides added advantages in analysing protien samples. Electrophoresis by single and multiple dimensional methods is becoming very popular in nanoparticle research to identify protein corona around particle which can predict organ targeting when used in vivo. This technique can also be used to detect toxicity potential of nanoparticles and generated oxidative stress. Multi-dimensional electrophoresis has already been used in conventional pharmaceutical application and now is marching to nanoparticle and/drug delivery research area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

1-DE:

1-Dimensional electrophoresis

2-DE:

2-Dimensional electrophoresis

2D-DIGE:

2-Dimensional differential in-gel electrophoresis

CE:

Capillary electrophoresis

CNTs:

Carbon Nano Tubes

CB:

Carbon black

CSF:

Cerebrospinal Fluid

IEF:

Immunofixation

IEF:

Isoelectric focussing

NEPHGE:

Nonequilibrium pH gel electrophoresis

PAGE:

Polyacrylamide gel electrophoresis

pI:

Isoelectric point

BAM:

N-tert-butylacrylamide

PIC:

Protease inhibitor cocktail

PMSF:

Phenyl methyl sulfonyl fluoride

PTMs:

Posttranslational modifications

SPE:

Serum protein electrophoresis

SDS:

Sodium dodecyl sulphate

TCA:

Trichloroacetic acid

KOH:

Potassium hydroxide

MPS:

Mononuclear phagocytic system

MS:

Mass spectroscopy

MWCNTs:

Multi-walled carbon nanotubes

NIPAM:

N-isopropylacrylamide

SILAC:

Stable Isotope labelling by amino acids in cell culture

ALP:

Alkaline phosphatase

LDH:

Lactate dehydrogenase

CK:

Creatine kinase

B. garinii :

Borrelia garinii

C. trachomatis :

Chlamydia trachomatis

E. coli :

Escherichia coli

H. pylori :

Helicobacter pylori

References

  1. Hames BD, Rickwood D (eds) (1990) Gel electrophoresis of proteins: a practical approach, 2nd edn. Oxford University Press, New York, NY

    Google Scholar 

  2. Gallagher SR (ed) (2006) Current protocols in molecular biology 10.2.1. Wiley, New York, NY (analysis of proteins)

    Google Scholar 

  3. Smithies O, Poulik MD (1956) Two-dimensional electrophoresis of serum proteins. Nature 177:1033

    Google Scholar 

  4. Grabar P, Williams CA (1953) Méthode permettant l’étude conjuguée des proprietés électrophorétiques et immunochimiques d’un mélange de protéines; application au sérum sanguin. Biochim Biophys Acta 10:193–194

    Google Scholar 

  5. Bussard A, Huet JM (1959) Description of a technic simultaneously combining electrophoresis and immunological precipitation in gel: electrosyneresis. Biochim Biophys Acta 34:258–260

    Google Scholar 

  6. Laurell CB (1965) Antigen-antibody crossed electrophoresis. Anal Biochem 10:358–361

    Google Scholar 

  7. Ressler N (1960) Two-dimensional electrophoresis of protein antigens with an antibody containing buffer. Clin Chim Acta 5:795–800

    Google Scholar 

  8. Raymond S, Weintraub L (1959) Acrylamide gel as a supporting medium for zone electrophoresis. Science 130:711

    Google Scholar 

  9. Raymond S (1964) Acrylamide gel electrophoresis. Ann N Y Acad Sci 121:350–365

    Google Scholar 

  10. Margolis J, Kenrick KG (1969) Two-dimensional resolution of plasma proteins by combination of polyacrylamide disc and gradient gel electrophoresis. Nature 221:1056–1057

    Google Scholar 

  11. Kaltschmidt E, Wittmann HG (1970) Ribosomal proteins. VII: Two-dimensional polyacrylamide gel electrophoresis for fingerprinting of ribosomal proteins. Anal Biochem 36:401–412

    Google Scholar 

  12. Ornstein L (1964) Disc electrophoresis. I. Background and theory. Ann N Y Acad Sci 121:321–349

    Google Scholar 

  13. Davis BJ (1964) Disc electrophoresis. II. Method and application to human serum proteins. Ann N Y Acad Sci 121:404–427

    Google Scholar 

  14. Dale G, Latner AL (1969) Isoelectric focusing of serum proteins in acrylamide gels followed by electrophoresis. Clin Chim Acta 24:61–68

    Google Scholar 

  15. Macko V, Stegemann H (1969) Mapping of potato proteins by combined electrofocusing and electrophoresis identification of varieties. Hoppe Seylers Z Physiol Chem 350:917–919

    Google Scholar 

  16. Domschke W, Seyde W, Domagk GF (1970) Two dimensional separation of serum proteins by isoelectrical focussing and disk gel electrophoresis. Z Klin Chem Klin Biochem 8:319–320

    Google Scholar 

  17. Anderson L, Anderson NG (1977) High resolution two-dimensional electrophoresis of human plasma proteins. Proc Natl Acad Sci U S A 74:5421–5425

    Google Scholar 

  18. Bhakdi S, Knufermann H, Hoelzl Wallach DF (1974) Two dimensional separation of erythrocyte membrane proteins. Biochem Biophys Acta 345:448–457

    Google Scholar 

  19. MacGillivray AJ, Rickwood D (1974) The heterogeneity of mouse-chromatin nonhistone proteins as evidenced by two-dimensional polyacrylamide-gel electrophoresis and ion-exchange chromatography. Eur J Biochem 41:181–190

    Google Scholar 

  20. Stegemann H, Francksen H, Macko V (1973) Potato proteins: genetic and physiological changes, evaluated by one- and two-dimensional PAA-gel-techniques. Z Naturforsch C 28:722–732

    Google Scholar 

  21. Wrigley CW (1970) Protein mapping by combined gel electrofocusing and electrophoresis: application to the study of genotypic variations in wheat gliadins. Biochem Genet 4:509–516

    Google Scholar 

  22. Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. Humangenetik 26:231–243

    Google Scholar 

  23. Klose J, von Wallenberg-Pachaly H (1976) Changes of soluble protein populations during organogenesis of mouse embryos as revealed by protein mapping. Dev Biol 51:324–331

    Google Scholar 

  24. Klose J (1979) Isoelectric focusing and electrophoresis combined as a method for defining new point mutations in the mouse. Genetics 92:s13–s24

    Google Scholar 

  25. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    Google Scholar 

  26. Bravo R, Celis JE (1982) Up-dated catalogue of HeLa cell proteins: percentages and characteristics of the major cell polypeptides labeled with a mixture of 16 14C-labeled amino acids. Clin Chem 28:766–781

    Google Scholar 

  27. Comings DE (1982) Two-dimensional gel electrophoresis of human brain proteins. I. Technique and nomenclature of proteins. Clin Chem 28:782–789

    Google Scholar 

  28. Goldman D, Merril CR, Polinsky RJ, Ebert MH (1982) Lymphocyte proteins in Huntington’s disease: quantitative analysis by use of two-dimensional electrophoresis and computerized densitometry. Clin Chem 28:1021–1025

    Google Scholar 

  29. Klose J, Zeindl E, Sperling K (1982) Analysis of protein patterns in two-dimensional gels of cultured human cells with trisomy. Clin Chem 28:987–992

    Google Scholar 

  30. Klose J, Putz B (1983) Analysis of two-dimensional protein patterns from mouse embryos with different trisomies. Proc Natl Acad Sci U S A 80:3753–3757

    Google Scholar 

  31. Clark BF (1981) Towards a total human protein map. Nature 292:491–492

    Google Scholar 

  32. Schneider W, Klose J (1983) Analysis of two-dimensional electrophoretic protein patterns using a video camera and a computer. I. The resolution power of the video camera. Electrophoresis 4:284–291

    Google Scholar 

  33. Anderson NG, Anderson L (1982) The human protein index. Clin Chem 28:739–748

    Google Scholar 

  34. Klose J (1989) Systematic analysis of the total proteins of a mammalian organism: principles, problems and implications for sequencing the human genome. Electrophoresis 10:140–152

    Google Scholar 

  35. Merril CR, Goldman D, Sedman SA, Ebert MH (1981) Ultrasensitive stain for proteins in polyacrylamide gels shows regional variations in cerebrospinal fluid proteins. Science 211:1437–1438

    Google Scholar 

  36. Wilson KE, Marouga R, Prime JE, Pashby DP, Orange PR, Crosier S, Keith AB (2005) Comparative proteomic analysis using samples obtained with laser microdissection and saturation dye labelling. Proteomics 5:3851–3858

    Google Scholar 

  37. Bjellqvist B, Ek K, Righetti PG, Gianazza E, Gorg A, Westermeier R, Postel W (1982) Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods 6:317–339

    Google Scholar 

  38. Klose J, Kobalz U (1995) Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16:1034–1059

    Google Scholar 

  39. Poland J, Cahill MA, Sinah P (2003) Isoelectric focusing in long immobilized pH gradient gels to improve protein separation in proteomic analysis. Electrophoresis 24:1271–1275

    Google Scholar 

  40. O’Farrell PZ, Goodman HM, O’Farrell PH (1977) High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12:1133–1141

    Google Scholar 

  41. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Google Scholar 

  42. Nothwang HG, Schindler J (2009) Two-dimensional separation of membrane proteins by 16-BAC-SDS-PAGE. Methods Mol Biol 528:269–277

    Google Scholar 

  43. Jorgenson JW, Lukacs KD (1981) Zone electrophoresis in open-tubular glass capillaries. Anal Chem 53:1298–1302

    Google Scholar 

  44. Quang C, Petersen SL, Ducatte GR, Ballou NE (1996) Characterization and separation of inorganic fine particles by capillary electrophoresis with an indifferent electrolyte system. J Chromatogr A 732:377–384

    Google Scholar 

  45. Petersen SL, Ballou NE (1992) Effects of capillary temperature control and electrophoretic heterogeneity on parameters characterizing separations of particles by capillary zone electrophoresis. Anal Chem 64:1676–1681

    Google Scholar 

  46. Huff BV, McIntire GL (1994) Determination of the electrophoretic mobility of polystyrene particles by capillary electrophoresis. J Microcol 6:591–594

    Google Scholar 

  47. Templeton AC, Cliffel DE, Murray RW (1999) Redox and fluorophore functionalization of water-soluble, tiopronin-protected gold clusters. J Am Chem Soc 121:7081–7089

    Google Scholar 

  48. Liu FK, Koa FH, Huang PW, Wu CH, Chu TC (2005) Studying the size/shape separation and optical properties of silver nanoparticles by capillary electrophoresis. J Chromatogr A 1062:139–145

    Google Scholar 

  49. Liu FK, Huang PW, Chang YC, Ko FH, Chu TC (2004) Microwave-assisted synthesis of silver nanorods. J Mater Res 19:469–473

    Google Scholar 

  50. Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117

    Google Scholar 

  51. Chen YH, Yeh CS (2002) Laser ablation method: use of surfactants to form dispersed Ag nanoparticles. Colloids Surf A 197:133–139

    Google Scholar 

  52. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Del Rev 61:428–437

    Google Scholar 

  53. Rosengren A, Pavlovic E, Oscarsson S, Krajewski A, Ravaglioli A, Piancastelli A (2002) Plasma protein adsorption pattern on characterized ceramic biomaterials. Biomaterials 23:1237–1247

    Google Scholar 

  54. Marshall J, Kupchak P, Zhu W (2003) Processing of serum proteins underlies the mass spectral fingerprinting of myocardial infarction. J Proteome Res 2:361–372

    Google Scholar 

  55. Olivieri E, Herbert B, Righetti PG (2001) The effect of protease inhibitors on the two-dimensional electrophoresis pattern of red blood cell membranes. Electrophoresis 22:560–565

    Google Scholar 

  56. Hulmes JD, Deidra Bethea D, Ho K, Huang SP, Ricci DL, Opiteck GJ, Hefta SA (2004) An investigation of plasma collection, stabilization, and storage procedures for proteomic analysis of clinical samples. Clin Proteo Journal 1:17–31

    Google Scholar 

  57. Pasella S, Baralla A, Canu E, Pinna S, Vaupel J, Deiana M et al (2013) Pre-analytical stability of the plasma proteomes based on the storage temperature. Proc Natl Acad Sci U S A 11:10–20

    Google Scholar 

  58. Jiang L, Hea L, Fountoulakis M (2004) Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A 1023:317–320

    Google Scholar 

  59. Ahmad Y, Sharma N (2009) An effective method for the analysis of human plasma proteome using two-dimensional gel electrophoresis. J Proteomics Bioinform 2:495–499

    Google Scholar 

  60. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105(38):14265–14270

    Google Scholar 

  61. Gessner A, Lieske A, Paulke BR, Muller RH (2002) Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 54:165–170

    Google Scholar 

  62. Gessner A, Lieske A, Paulke BR, Muller RH (2003) Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J Biomed Mater Res A 65A:319–326

    Google Scholar 

  63. Blunk T, Hochstrasser DF, Sanchez JC, Muller BW, Muller RH (1993) Colloidal carriers for intravenous targeting: plasma protein adsorption patterns on surface modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 14:1382–1387

    Google Scholar 

  64. Gessner A, Waicz R, Lieske A, Paulke BR, Mader K, Muller RH (2000) Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int J Pharm 196:245–249

    Google Scholar 

  65. Cedervall T, Lynch I, Foy M, Bergg T, Donnelly SC et al (2007) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 46:5754–5756

    Google Scholar 

  66. Cedervall T, Lynch I, Lindman S, Nilsson H, Thulin E, Linse S, Dawson KA (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A 104:2050–2055

    Google Scholar 

  67. Lück M, Schröder W, Paulke BR, Blunk T, Müller RH (1999) Complement activation by model drug carriers for intravenous application: determination by two-dimensional electrophoresis. Biomaterials 20:2063–2068

    Google Scholar 

  68. Leroux JC, Alleman E, de Jaeghere F, Doelker E, Gurny R (1996) Biodegradable nanoparticles: from sustained release formulations to improved site specific drug delivery. J Contr Release 39:339–350

    Google Scholar 

  69. Dobrovolskaia MA, Guszcysski T, Specht S, McLeland CB (2014) NCL method ITA-4—analysis of nanoparticle interaction with plasma proteins by 2D PAGE, Available from: http://ncl.cancer.gov/NCL_Method_ITA-4.pdf. Accessed on 09 July 2014

  70. Göppert TM, Müller RH (2005) Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int J Pharm 302:172–186

    Google Scholar 

  71. Göppert TM, Müller RH (2003) Plasma protein adsorption of Tween 80- and poloxamer 188-stabilized solid lipid nanoparticles. J Drug Target 11:225–231

    Google Scholar 

  72. Göppert TM, Müller RH (2004) Alternative sample preparation prior to two-dimensional electrophoresis protein analysis on solid lipid nanoparticles. Electrophoresis 25:134–140

    Google Scholar 

  73. Thode K, Lück M, Semmler W, Müller RH, Kresse M (1997) Determination of plasma protein adsorption on magnetic iron oxides: sample preparation. Pharm Res 14:905–910

    Google Scholar 

  74. Hanash S (2003) Disease proteomics. Nature 422:226–232

    Google Scholar 

  75. Rabilloud T (2002) Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2:3–10

    Google Scholar 

  76. Rui Z, Jian-Guo J, Yuan-Peng T, Hai P, BingGen R (2003) Use of serological proteomic methods to find biomarkers associated with breast cancer. Proteomics 3:433–439

    Google Scholar 

  77. Charrier JP, Tournel C, Michel S et al (2001) Differential diagnosis of prostate cancer and benign prostate hyperplasia using two dimensional electrophoresis. Electrophoresis 22:1861–1866

    Google Scholar 

  78. Steel LF, Shumpert D, Trotter M et al (2003) A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma. Proteomics 3:601–609

    Google Scholar 

  79. Kellner R, Lichtenfels R, Atkins D et al (2002) Targeting of tumor associated antigens in renal cell carcinoma using proteome-based analysis and their clinical significance. Proteomics 2:1743–1751

    Google Scholar 

  80. Sinz A, Bantscheff M, Mikkat S et al (2002) Mass spectrometric proteome analyses of synovial fluids and plasmas from patients suffering from rheumatoid arthritis and comparison to reactive arthritis or osteoarthritis. Electrophoresis 23:3445–3456

    Google Scholar 

  81. He QY, Lau GK, Zhou Y et al (2003) Serum biomarkers of hepatitis B virus infected liver inflammation: a proteomic study. Proteomics 3:666–674

    Google Scholar 

  82. Tamilvanan S, Schmidt S, Muller RH, Simon B (2005) In vitro adsorption of plasma proteins onto the surface (charges) modified-submicron emulsions for intravenous administration. Eur J Pharm Biopharm 59:1–7

    Google Scholar 

  83. Shegokar R, Jansch M, Singh KK, Müller RH (2011) In vitro protein adsorption studies on nevirapine nanosuspensions for HIV/AIDS chemotherapy. Nanomed Nanotech Biol Med 7:333–340

    Google Scholar 

  84. Kasongo WK, Jansch M, Muller RH, Walker RB (2011) Evaluation of the in vitro differential protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (NLCs) for potential targeting to the brain. J Liposome Res 21(3):245

    Google Scholar 

  85. Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Muller RH (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18:301–313

    Google Scholar 

  86. Zhang H, Burnum KE et al (2011) Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics 11:4569–4577

    Google Scholar 

  87. Kowalczyk B, Lagzi I, Grzybowski BA (2011) Nanoseparations: strategies for size and/or shape-selective purification of nanoparticles. Curr Opin Coll Inter Sci 16:135–148

    Google Scholar 

  88. Nilsson CL (2002) Bacterial proteomics and vaccine development. Am J Pharmacogenomics 2(1):59–65

    Google Scholar 

  89. Humphery-Smith I, Cordwell SJ, Blackstock WP (1997) Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis 18(8):1217–1242

    Google Scholar 

  90. Clayton RA, White O, Fraser CM (1998) Findings emerging from complete microbial genome sequences. Curr Opin Microbiol 1(5):562–566

    Google Scholar 

  91. Adamczyk-Poplawska M, Sergiusz Markowicz S, Jagusztyn-Krynick EK (2011) Proteomics for development of vaccine. J Proteom 74:2596–2616

    Google Scholar 

  92. Cai X, Ramalingam R et al (2013) Characterization of carbon nanotube protein corona by using quantitative proteomics. Nanomed Nanotech Biol Med 9:583–593

    Google Scholar 

  93. Wang X, Jia G, Wang H, Nie H, Yan L, Deng XY et al (2009) Diameter effects on cytotoxicity of multi-walled carbon nanotubes. J Nanosci Nanotechnol 9:3025–3033

    Google Scholar 

  94. Ge C, Du J, Zhao L, Wang L, Liu Y, Li D et al (2011) Binding of blood proteins to carbon nanotubes reduce cytotoxicity. Proc Natl Acad Sci U S A 108(41):16968–16973

    Google Scholar 

  95. Kussmann M, Panchaud A, Affolter M (2010) Proteomics in nutrition: status quo and outlook for biomarkers and bioactives. J Proteome Res 9:4876–4887

    Google Scholar 

  96. Cairns DA (2011) Statistical issues in quality control of proteomic analyses: good experimental design and planning. Proteomics 11:1037–1048

    Google Scholar 

  97. Gaso-Sokač D, Kovač S, Josić D (2010) Application of proteomics in food technology and food biotechnology: process development, quality control and product safety. Food Technol Biotechnol 48:284–295

    Google Scholar 

  98. Rinalducci S, D’Amici GM, Blasi B, Vaglio S, Grazzini G, Zolla L (2011) Peroxiredoxin-2 as a candidate biomarker to test oxidative stress levels of stored red blood cells under blood bank conditions. Transfusion 51:1439–1449

    Google Scholar 

  99. Minkiewicz P, Dziuba J, Iwaniak A, Dziuba M, Darewicz M (2008) BIOPEP database and other programs for processing bioactive peptide sequences. J AOAC Int 91:965–980

    Google Scholar 

  100. Mouat MF, Kolli K, Orlando R, Hargrove JL, Grider A (2005) The effects of quercetin on SW480 human colon carcinoma cells: a proteomic study. Nutr J 4:11

    Google Scholar 

  101. VanBogelen RA, Schiller EE, Thomas JD, Neidhardt FC (1999) Diagnosis of cellular states of microbial organisms using proteomics. Electrophoresis 20(11):2149–2159

    Google Scholar 

  102. Cash P (2009) Proteomics in the study of the molecular taxonomy and epidemiology of bacterial pathogens. Electrophoresis 30(S1):S113–S141

    Google Scholar 

  103. Jungblut PR, Hecker M (2007) Proteomics of microbial pathogens. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Google Scholar 

  104. Tabandeh F, Shariati P, Khodabandeh M (2012) Application of two-dimensional gel electrophoresis to microbial systems. In: Magdeldin S (ed) Gel electrophoresis - principles and basics. Intech Publications, Croatia

    Google Scholar 

  105. Kan B, Habibi H, Schmid M, Liang W, Wang R, Wang D, Jungblut PR (2004) Proteome comparison of Vibrio cholerae cultured in aerobic and anaerobic conditions. Proteomics 4(10):3061–3067

    Google Scholar 

  106. Giot JF (2010) Agarose gel electrophoresis – applications in clinical chemistry. J Mol Biol 29:9–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjita Shegokar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shegokar, R., Sawant, S. (2015). Multi-dimensional Electrophoresis: The March in Pharma Applications. In: Lungu, M., Neculae, A., Bunoiu, M., Biris, C. (eds) Nanoparticles' Promises and Risks. Springer, Cham. https://doi.org/10.1007/978-3-319-11728-7_15

Download citation

Publish with us

Policies and ethics