Skip to main content

Dielectrophoresis Used for Nanoparticle Manipulation in Microfluidic Devices

  • Chapter
  • First Online:
Nanoparticles' Promises and Risks

Abstract

Nano-sized particles have received considerable interest in the past two decades. The filtration of nanoparticles is becoming an important issue as they are produced in large numbers from material synthesis or combustion emission, and their effect on human health is relatively high. Dielectrophoresis (DEP), phenomenon that induces spatial movement of particles placed in nonuniform electric field, depending on the dielectric properties of the particles and the surrounding medium, the geometry of the electrodes, and the amplitude and frequency of the applied signal, proved to be the most adequate tool in order to manipulate particles at submicron scale. First, this work presents an overview of the various applications of the dielectrophoresis. Next, the theoretical description of the main forces implied in the spatial control of submicron particles is given. Finally, a mathematical model describing the filtration of nanoparticles suspended in flue gas by a combination of dielectrophoretic and electrohydrodynamic forces, and a set of numerical results obtained by simulations performed in the frame of this model are presented. The dielectrophoretic force and the nanoparticles concentration profile in a DEP-based separation micro system consisting of a micro channel are numerically investigated using the COMSOL Multiphysics finite element code. The performances of the filtration device are analyzed in terms of a specific quantity related to the separation process, called Filtration rate. The simulations provide the optimal set of values for the control parameters of the separation process in order to obtain a desired performance, and represent a useful tool in designing of microfluidic devices for separating nanoparticles from flue gas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neculae A, Giugiulan R, Lungu M and Strambeanu N (2013) Separation of nanoparticles from combustion gases wastes of incinerators. IMCET 2013, Kemer-Antalya, Turkey, 16–19 April, 2013, www.nanodep.com

  2. Rickerby D, Morrison M (2007) Report from the workshop on nanotechnologies for environmental remediation, JRC Ispra 2007, www.nanowerk.com/nanotechnology/reports/reportpdf/report101.pdf

  3. Minutolo P, Sgro L, Costagliola M, Prati M, Sirignano M, D’Anna A (2010) Ultrafine particle emission from combustion devices burning natural gas. Chem Eng Trans 22:239–244

    Google Scholar 

  4. Chang M, Huang C (2001) Characteristics of energy flow in municipal solid waste incinerator. J Environ Eng 127:78–81

    Article  Google Scholar 

  5. Lin C, Wey M, Cheng H (2006) Effect of pressure fluctuations on the quality of fluidization and on the generation of particulate matters during incineration. J Environ Eng 132:960–966

    Article  Google Scholar 

  6. Pethig R (2010) Review article—dielectrophoresis: status of the theory, technology and applications. Biomicrofluidics 4:022811-1–022811-34

    Google Scholar 

  7. Li M, Li WH, Zhang J, Alici G, Wen W (2014) A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation. J Phys D Appl Phys 47:063001

    Article  Google Scholar 

  8. Neculae A, Biris C, Bunoiu M, Lungu M (2012) Numerical analysis of nanoparticle behavior in a microfluidic channel under dielectrophoresis. J Nano Res 14:1–12

    Article  Google Scholar 

  9. Zhang C, Khoshmanesh K, Mitchell A, Kalantar-Zadeh K (2010) Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal Bioanal Chem 396:401–420

    Article  Google Scholar 

  10. Pohl HA (1978) Dielectrophoresis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  11. Ramos A (2011) Electrokinetics and electrohydrodynamics in microsystems, vol 530, CSIM courses and lectures. Springer, New York, NY

    Book  Google Scholar 

  12. Hughes MP (2000) AC electrokinetics: applications for nanotechnology. Nanotechnology 11:124

    Article  Google Scholar 

  13. Shklyaev S, Straube A (2008) Particle entrapment in a fluid suspension as a feedback effect. New J Phys 10:1–12

    Article  Google Scholar 

  14. Barbaros C, Dongqing L (2011) Review – dielectrophoresis in microfluidics technology. Electrophoresis 32:2410–2427

    Article  Google Scholar 

  15. Green NG, Morgan H (1998) Separation of submicrometre particles using a combination of dielectrophoretic and electrohydrodynamic forces. J Phys D Appl Phys 31:L25

    Article  Google Scholar 

  16. Dickerson SJ (2007) Design of 3D integrated circuits for manipulating and sensing biological nanoparticles. PhD Thesis, University of Pittsburgh

    Google Scholar 

  17. Yuan Lin (2006) Numerical modeling of dielectrophoresis. Technical reports from Royal Institute of Technology KTH Mechanics SE-100 44 Stockholm, Sweden

    Google Scholar 

  18. Grebenkov DS, Filoche M, Sapoval B (2006) Mathematical basis for a general theory of Laplacian transport towards irregular interfaces. Phys Rev E Stat Nonlin Soft Matter Phys 73:021103

    Article  Google Scholar 

  19. Lamoreaux SK (2005) The Casimir force: background, experiments and applications. Rep Prog Phys 68:201–236

    Article  Google Scholar 

  20. Lapizco-Encinas BH, Rito-Palomares M (2007) Dielectrophoresis for the manipulation of nanobioparticles. Electrophoresis 28:4521–4538

    Article  Google Scholar 

  21. Ying L, White SS, Bruckbauer A, Meadows L, Korchev YE, Klenerman D (2004) Frequency and voltage dependence of the dielectrophoretic trapping of short lengths of DNA and dCTP in a nanopipette. Biophys J 86:1018–1027

    Article  Google Scholar 

  22. Tegenfeldt JO, Prinz C, Cao H, Huang RL, Austin RH, Chou SY, Cox EC, Sturm JC (2004) Micro- and nanofluidics for DNA analysis. Anal Bioanal Chem 378:1678–1692

    Article  Google Scholar 

  23. Regtmeier J, Eichhorn R, Viefhues M, Bogunovic L, Anselmetti D (2011) Electrodeless dielectrophoresis for bioanalysis: theory, devices and applications. Electrophoresis 32:2253–2273

    Article  Google Scholar 

  24. Nakano A, Ros A (2013) Protein dielectrophoresis: advances, challenges, and applications. Electrophoresis 34:1085–1096

    Article  Google Scholar 

  25. Becker FF, Wang X-B, Huang Y, Pethig R, Vykoukal J, Gascoyne PRC (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A 92:860

    Article  Google Scholar 

  26. Huang Y, Yang J, Wang X, Beckerand F, Gascoyne P (1999) The removal of human breast cancer cells from hematopoietic CD34+ stem cells by DEP field flow fractionation. J Hematother Stem Cell Res 8:481

    Article  Google Scholar 

  27. Honegger T, Lecarme O, Berton K, Peyrade D (2010) 4-D dielectrophoretic handling of Janus particles in a microfluidic chip. Microelect Eng 87:756–759

    Article  Google Scholar 

  28. Zhang L, Zhu Y (2010) Dielectrophoresis of Janus particles under high frequency ac-electric fields. App Phys Lett 96:141902

    Article  Google Scholar 

  29. Perro A, Reculusa S, Ravaine S, Bourgeat-Lamic E, Duguet E (2005) Design and synthesis of Janus micro- and nanoparticles. J Mater Chem 15:3745–3760

    Article  Google Scholar 

  30. Honegger T, Sarla S, Lecarme O, Berton K, Nicolas A, Peyrade D (2011) Selective grafting of proteins on Janus particles: adsorption and covalent coupling strategies. Microelect Eng 88:1852–1855

    Article  Google Scholar 

  31. Gangwal S, Cayre OJ, Velev OD (2008) Dielectrophoretic assembly of metallodielectric janus particles in AC electric fields. Langmuir 24:13312–13320

    Article  Google Scholar 

  32. Dimaki M, Bøggild P (2004) DEP of carbon nanotubes using microelectrodes: a numerical study. Nanotechnology 15:1095

    Article  Google Scholar 

  33. Dimaki M, Bøggild P (2005) Frequency dependence of the structure and electrical behaviour of carbon nanotube networks assembled by dielectrophoresis. Nanotechnology 16:759

    Article  Google Scholar 

  34. Wissner-Gross AD (2007) Dielectrophoretic reconfiguration of nanowire interconnects. Nanotechnology 17. http://alexwg.org/Nanotechnology2006.pdf

  35. Lungu M, Neculae A, Bunoiu M (2010) Some considerations on the dielectrophoretic manipulation of nanoparticles in fluid media. J Optoelect Adv Mater 12:2423–2426

    Google Scholar 

  36. Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles, vol 50–62. Research Studies ltd, Baldock, Hertfordshire, pp 200–210

    Google Scholar 

  37. Lei U, Pei-Hou S, Pethig R (2011) Refinement of the theory for extracting cell dielectric properties from dielectrophoresis and electrorotation experiments. Biomicrofluidics 5:044109

    Article  Google Scholar 

  38. Jones TB (2003) Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Mag 22:33–42

    Article  Google Scholar 

  39. Green NG, Ramos A, Morgan H (2002) Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method. J Elstat 56:235–254

    Google Scholar 

  40. Falokun CD, Marks GH (2007) Electrorotation of beads of immobilized cells. J Elstat 65:475–482

    Google Scholar 

  41. Castellanos A, Ramos A, Gonzales N, Green N, Morgan H (2003) Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J Phys D Appl Phys 36:2584

    Article  Google Scholar 

  42. Dai H (2001) Nanotube growth and characterization. In: Avouris P, Dresselhaus MS, Dresselhaus G (eds) Carbon nanotubes synthesis, structures, properties, and applications, vol 80, Topics in applied physics. Springer Science & Business Media, Berlin

    Google Scholar 

  43. Green NG, Ramos A, González A, Morgan H, Castellanos A (2000) Fluid flow induced by nonuniform ac electric fields in electrolytes on Experimental measurements microelectrodes. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics E61:4011

    Google Scholar 

  44. Green NG, Ramos A, Gonzalez A, Castellanos A, Morgan H (2001) Electrothermally induced fluid flow on microelectrodes. J Electrostat 53(2):71–87

    Article  Google Scholar 

  45. Einstein A (1905) The theory of the Brownian movement. Ann Phys 17:549

    Article  Google Scholar 

  46. Huang Y, Wang XB, Becker FF, Gascoyne PRC (1997) Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys J 73:1118

    Article  Google Scholar 

  47. Malaescu I, Giugiulan R, Lungu M and Strambeanu N, The Clausius-Mossotti factor in low frequency field of the powders resulted from waste combustion. The 13th International Balkan Workshop on Applied Physics, Constanta, July 4–6, 2013.

    Google Scholar 

  48. Holmes D, Green NG, Morgan H (2003) Microdevices for dielectrophoretic flow-through cell separation. IEEE Eng Med Biol Mag 22:85–90

    Article  Google Scholar 

  49. Lungu M (2009) Separation of small nonferrous particles using a two successive steps eddy-current separator with permanent magnets. Int J Min Proc 93:172–178

    Article  Google Scholar 

  50. Neculae A, Bunoiu M, Lungu A and Lungu M (2014) Flue gas filtration prediction in microfluidic devices using dielectrophoresis. The 14th International Balkan Workshop on Applied Physics IBWAP 2014, Constanta, July 2–4, 2014

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project number PN-II-ID-PCE-2011-3-0762.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Lungu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lungu, M., Bunoiu, M., Neculae, A. (2015). Dielectrophoresis Used for Nanoparticle Manipulation in Microfluidic Devices. In: Lungu, M., Neculae, A., Bunoiu, M., Biris, C. (eds) Nanoparticles' Promises and Risks. Springer, Cham. https://doi.org/10.1007/978-3-319-11728-7_14

Download citation

Publish with us

Policies and ethics