Skip to main content

Gold Nanoparticles in Biosensing Analyses

  • Chapter
  • First Online:
Nanoparticles' Promises and Risks

Abstract

Monitoring biomolecular interactions has become a constituent element of various medical and clinical applications. The importance of measuring the biomolecular interaction is evident as a potpourri of sensing strategies is currently and continuously devised. One of the strategies that can immensely enhance the sensitivity of the interaction is the one mediated by nanoparticles. Among the various nanoparticles, gold nanoparticle (AuNP) is opted for due to its capacity to improve the sensitivity and selectivity of biomolecular interactions. In addition to this, AuNP is easy to be manufactured, chemically inert, have uniform dispersibility and are able to react with chemically modified biomolecules. In this overview, the roles adopted by AuNP in various biosensing applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  2. Zayats M, Baron R, Popov I, Willner I (2005) Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design. Nano Lett 5:21–25

    Article  Google Scholar 

  3. Haick HJ (2007) Chemical sensors based on molecularly modified metallic nanoparticles. J Phys D Appl Phys 40:7173–7186

    Article  Google Scholar 

  4. Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908

    Article  Google Scholar 

  5. Zhao ML, Ni DD, Wang JW, Di JW, Tu YF (2008) Determination of nitrite at gold nanoparticles modified indium tin oxide electrode with direct electrodeposition. Chin J Anal Chem 36:1729–1731

    Article  Google Scholar 

  6. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  Google Scholar 

  7. Radwan SH, Azzazy HME (2009) Gold nanoparticles for molecular diagnostics. Expert Rev Mol Diagn 9:511–524

    Article  Google Scholar 

  8. Bunz UHF, Rotello VM (2010) Gold nanoparticle-fluorophore complexes: sensitive and discerning “noses” for biosystems sensing. Angew Chem Int 49:3268–3279

    Article  Google Scholar 

  9. Zeng SW, Yong KT, Roy I, Dinh XQ, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491–506

    Article  Google Scholar 

  10. Gopinath SCB, Awazu K, Fujimaki M, Shimizu K (2013) Evaluation of Anti-A/Udorn/307/1972 antibody specificity to Influenza viruses using a waveguide mode sensor. PLoS One 8:e81396

    Article  Google Scholar 

  11. Gopinath SCB, Awazu K, Fujimaki M, Shimizu K, Shima T (2013) Observations of immuno-gold conjugates on influenza viruses using waveguide-mode sensors. PLoS One 8:e69121

    Article  Google Scholar 

  12. Gopinath SCB, Awazu K, Fujimaki M, Shimizu K (2013) Aptamers that bind to the hemagglutinin of recent pandemic H1N1 and inhibits efficiently the agglutination. Acta Biomater 9:5080–5087

    Article  Google Scholar 

  13. Baldrich E, Restrepo A, O’Sullivan CK (2004) Aptasensor development: elucidation of critical parameters for optimal aptamer performance. Anal Chem 76:7053–7063

    Article  Google Scholar 

  14. Varma MM, Nolte DD, Inerowicz HD, Regnier FE (2004) Spinning-disk self-referencing interferometry of antigen-antibody recognition. Opt Lett 29:950–952

    Article  Google Scholar 

  15. Guo P (2005) RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy. J Nanosci Nanotechnol 5:1964–1982

    Article  Google Scholar 

  16. Gronewold TMA, Glass S, Quandt E, Famulok M (2005) Monitoring complex formation in the blood coagulation cascade using aptamer-coated SAW sensors. Biosens Bioelectron 20:2044–2052

    Article  Google Scholar 

  17. Odenthal KJ, Gooding JJ (2007) An introduction to electrochemical DNA biosensors. Analyst 132:603–610

    Article  Google Scholar 

  18. Peng L, Varma MM, Cho W, Regnier FE, Nolte DD (2007) Adaptive interferometry of protein on a BioCD. Appl Opt 46:5384–5395

    Article  Google Scholar 

  19. Wang X, Zhao M, Nolte DD (2008) Combined fluorescent and interferometric detection of protein on a BioCD. Appl Opt 47:2779–2789

    Article  Google Scholar 

  20. Gopinath SCB, Awazu K, Kumar PKR, Tominaga J (2008) Monitoring biomolecular interactions on a digital versatile disc: a BioDVD platform technology. ACS Nano 2:1885–1895

    Article  Google Scholar 

  21. Marquette CA, Blum LJ (2008) Electro-chemiluminescent biosensing. Anal Bioanal Chem 390:155–168

    Article  Google Scholar 

  22. Song S, Wang L, Li J, Zhao J, Fan C (2008) Aptamer-based biosensors. Trends Anal Chem 27:108–117

    Article  Google Scholar 

  23. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294

    Article  Google Scholar 

  24. Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83:4440–4452

    Article  Google Scholar 

  25. Zanoli LM, D’Agata R, Spoto G (2012) Functionalized gold nanoparticles for ultrasensitive DNA detection. Anal Bioanal Chem 402:1759–1771

    Article  Google Scholar 

  26. Gopinath SC, Lakshmipriya T, Awazu K (2014) Colorimetric detection of controlled assembly and disassembly of aptamers on unmodified gold nanoparticles. Biosens Bioelectron 51:115–123

    Article  Google Scholar 

  27. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  Google Scholar 

  28. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55

    Article  Google Scholar 

  29. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    Article  Google Scholar 

  30. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman RJ (1994) Synthesis of thiol-derivatised gold nanoparticles in a 2-phase liquid-liquid system. Chem Soc Chem Commun:801–802

    Google Scholar 

  31. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950

    Article  Google Scholar 

  32. Larguinho M, Baptista PV (2012) J. Gold and silver nanoparticles for clinical diagnostics—from genomics to proteomics. Proteomics 75:2811–2823

    Article  Google Scholar 

  33. Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 101:14036–14039

    Article  Google Scholar 

  34. Li H, Rothberg L (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126:10958–10961

    Article  Google Scholar 

  35. Yuan J, Wu S, Duan N, Ma X, Xia Y, Chen J, Ding Z, Wang Z (2014) A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta 127:163–168

    Article  Google Scholar 

  36. Liu JW, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed Engl 45:90–94

    Article  Google Scholar 

  37. Shen Z, Hou N, Jin M, Qiu Z, Wang J, Zhang B, Wang X, Wang J, Zhou D, Li J (2014) A novel enzyme-linked immunosorbent assay for detection of Escherichia coli O157:H7 using immunomagnetic and beacon gold nanoparticles. Gut Pathog 6:14

    Article  Google Scholar 

  38. Li YS, Zhou Y, Meng XY, Zhang YY, Song F, Lu SY, Ren HL, Hu P, Liu ZS, Zhang JH (2014) Gold nanoparticle aggregation-based colorimetric assay for β-casein detection in bovine milk samples. Food Chem 162:22–26

    Article  Google Scholar 

  39. Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886

    Article  Google Scholar 

  40. Hara M, Takao S, Fukuda S, Shimazu Y, Miyazaki K (2008) Evaluation of three immunochromatographic kits for rapid detection of influenza virus A and B. LabMedicine 39:603–610

    Google Scholar 

  41. Mori M, Katada J, Chiku H, Nakamura K, Oyamada T (2012) Development of highly sensitive immunochromatographic detection kit for seasonal influenza virus using silver amplification. Fujifilm Res Develop 57:5–11

    Google Scholar 

  42. Mitamura K, Kawakami C, Shimizu H, Abe T, Konomi Y, Yasumi Y, Yamazaki M, Ichikawa M, Sugaya N (2013) Evaluation of a new immunochromatographic assay for rapid identification of influenza A, B, and A(H1N1)2009 viruses. J Infect Chemother 19:633–638

    Article  Google Scholar 

  43. Fleischm M, Hendra PJ, McQuilla AJ (1974) Raman-spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  Google Scholar 

  44. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217

    Article  Google Scholar 

  45. Jeanmaire DL, Vanduyne RP (1977) Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20

    Article  Google Scholar 

  46. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  Google Scholar 

  47. Nie SM, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  Google Scholar 

  48. Wang Y, Ravindranath S, Irudayaraj J (2011) Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal Bioanal Chem 399:1271–1278

    Article  Google Scholar 

  49. Kretschmann E, Raether H (1968) Radiative decay of nonradiative surface plasmons excited by light. Z Naturforsch 23:2135–2136

    Google Scholar 

  50. Wang X, Ramstrom O, Yan MD (2010) Quantitative analysis of multivalent ligand presentation on gold glyconanoparticles and the impact on lectin binding. Anal Chem 82:9082–9089

    Article  Google Scholar 

  51. Lin YB, Zou Y, Mo YY, Guo JP, Lindquist RG (2010) E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing. Sensors 10:9397–9406

    Article  Google Scholar 

  52. Chiang CY, Hsieh ML, Huang KW, Chau LK, Chang CM, Lyu SR (2010) Fiber-optic particle plasmon resonance sensor for detection of interleukin-1β in synovial fluids. Biosens Bioelectron 26:1036–1042

    Article  Google Scholar 

  53. Briglin SM, Gao T, Lewis NS (2004) Detection of organic mercaptan vapors using thin films of alkylamine-passivated gold nanocrystals. Langmuir 20:299–305

    Article  Google Scholar 

  54. Otsuka H, Akiyama Y, Nagasaki Y, Kataoka K (2001) Quantitative and reversible lectin-induced association of gold nanoparticles modified with alpha-lactosyl-omega-mercapto-poly(ethylene glycol). J Am Chem Soc 123:8226–8230

    Article  Google Scholar 

  55. Loyprasert S, Hedstrom M, Thavarungkul P, Kanatharana P, Mattiasson B (2010) Sub-attomolar detection of cholera toxin using a label-free capacitive immunosensor. Biosens Bioelectron 25:1977–1983

    Article  Google Scholar 

  56. Liang KZ, Mu WJ (2006) Flow-injection immuno-bioassay for interleukin-6 in humans based on gold nanoparticles modified screen-printed graphite electrodes. Anal Chim Acta 580:128–135

    Article  Google Scholar 

  57. Kim GI, Kim KW, Oh MK, Sung YM (2010) Electrochemical detection of vascular endothelial growth factors (VEGFs) using VEGF antibody fragments modified Au NPs/ITO electrode. Biosens Bioelectron 25:1717–1722

    Article  Google Scholar 

  58. Kim DM, Noh HB, Park DS, Ryu SH, Koo JS, Shim YB (2009) Immunosensors for detection of Annexin II and MUC5AC for early diagnosis of lung cancer. Biosens Bioelectron 25:456–462

    Article  Google Scholar 

  59. Lei CX, Gong FC, Shen GL, Yu RQ (2003) Amperometric immunosensor for Schistosoma japonicum antigen using antibodies loaded on a nano-Au monolayer modified chitosan-antrapped carbon paste electrode. Sens Actuat B Chem 96:582–588

    Article  Google Scholar 

  60. Dungchai W, Siangproh W, Chaicumpa W, Tongtawe P, Chailapakul O (2008) Salmonella typhi determination using voltammetric amplification of nanoparticles: a highly sensitive strategy for metalloimmunoassay based on a copper-enhanced gold label. Talanta 77:727–732

    Article  Google Scholar 

  61. Yang GJ, Huang JL, Meng WJ, Shen M, Jiao XA (2009) A reusable capacitive immunosensor for detection of Salmonella spp. based on grafted ethylene diamine and self-assembled gold nanoparticle monolayers. Anal Chim Acta 647:159–166

    Article  Google Scholar 

  62. Lin YH, Chen SH, Chuang YC, Lu YC, Shen TY, Chang CA, Lin CS (2008) Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7. Biosens Bioelectron 23:1832–1837

    Article  Google Scholar 

  63. Singh K, Rahman MA, Son JI, Kim KC, Shim YB (2008) An amperometric immunosensor for osteoproteogerin based on gold nanoparticles deposited conducting polymer. Biosens Bioelectron 23:1595–1601

    Article  Google Scholar 

  64. Ho JAA, Chang HC, Shih NY, Wu LC, Chang YF, Chen CC, Chou C (2010) Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor. Anal Chem 82:5944–5950

    Article  Google Scholar 

  65. Veigas B, Jacob JM, Costa MN, Santos DS, Viveiros M, Inácio J, Martins R, Barquinha P, Fortunato E, Baptista PV (2012) Gold on paper-paper platform for Au-nanoprobe TB detection. Lab Chip 12:4802–4808

    Article  Google Scholar 

  66. Kleo K, Schäfer D, Klar S, Jacob D, Grunow R, Lis F (2012) Immunodetection of inactivated Francisella tularensis bacteria by using a quartz crystal microbalance with dissipation monitoring. Anal Bioanal Chem 404:843–851

    Article  Google Scholar 

  67. Viator JA, Gupta S, Goldschmidt BS, Bhattacharyyal K, Kannan R, Shukla R, Dale PS, Boote E, Katti K (2010) Gold nanoparticle mediated detection of prostate cancer cells using photoacoustic flowmetry with optical reflectance. J Biomed Nanotechnol 2:187–191

    Article  Google Scholar 

  68. Maltez-da Costa M, de la Escosura-Muñiz A, Nogués C, Barrios L, Ibáñez E, Merkoçi A (2012) Detection of circulating cancer cells using electrocatalytic gold nanoparticles. Small 8:3605–3612

    Article  Google Scholar 

  69. Li N, Larson T, Nguyen HH, Sokolov KV, Ellington AD (2010) Directed evolution of gold nanoparticle delivery to cells. Chem Commun 46:392–394

    Article  Google Scholar 

  70. Wang L, Bai JY, Huang PF, Wang HJ, Zhang LY, Zhao YQ (2006) Self-assembly of gold nanoparticles for the voltammetric sensing of epinephrine. Electrochem Commun 8:1035–1040

    Article  Google Scholar 

  71. Kurniawan F, Tsakova V, Mirsky VM (2006) Gold nanoparticles in non-enzymatic electrochemical detection of sugars. Electroanalysis 18:1937–1942

    Article  Google Scholar 

  72. Li Y, Song YY, Yang C, Xia XH (2007) Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem Commun 9:981–988

    Article  Google Scholar 

  73. Raj CR, Ohsaka TJ (2003) Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol. J Electroanal Chem 540:69–77

    Article  Google Scholar 

  74. Li MG, Gao F, Yang P, Wang L, Fang B (2008) Conveniently assembling dithiocarbamate and gold nanoparticles onto the gold electrode: a new type of electrochemical sensors for biomolecule detection. Surf Sci 602:151–155

    Article  Google Scholar 

  75. Raj CR, Okajima T, Ohsaka TJ (2003) Gold nanoparticle arrays for the voltammetric sensing of dopamine. J Electroanal Chem 543:127–133

    Article  Google Scholar 

  76. Zhang SJ, Xu ML, Zhang YZ (2009) Simultaneous voltammetric detection of salsolinol and uric acid in the presence of high concentration of ascorbic acid with gold nanoparticles/functionalized multiwalled carbon nanotubes composite film modified electrode. Electroanalysis 21:2607–2610

    Article  Google Scholar 

  77. Hu GZ, Ma YG, Guo Y, Shao SJ (2008) Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode. Electrochim Acta 53:6610–6615

    Article  Google Scholar 

  78. Kalimuthu P, John SAJ (2008) Size dependent electrocatalytic activity of gold nanoparticles immobilized onto three dimensional sol–gel network. J Electroanal Chem 617:164

    Article  Google Scholar 

  79. Kannan P, John SA (2009) Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode. Anal Biochem 386:65–72

    Article  Google Scholar 

  80. Lu LP, Lin XQ (2004) Glassy carbon electrode modified with gold nanoparticles and DNA for the simultaneous determination of uric acid and norepinephrine under coexistence of ascorbic acid. Anal Sci 20:527–530

    Article  Google Scholar 

  81. Yin HS, Zhou YI, Ai SY, Han RX, Tang TT, Zhu LS (2010) Electrochemical behavior of bisphenol A at glassy carbon electrode modified with gold nanoparticles, silk fibroin, and PAMAM dendrimers. Microchim Acta 170:99–105

    Article  Google Scholar 

  82. Zhao W, Brook MA, Li YF (2008) Design of gold nanoparticle-based colorimetric biosensing assays. Chembiochem 9:2363–2371

    Article  Google Scholar 

Download references

Acknowledgements

T.H. Tang was supported by a Universiti Sains Malaysia (USM) Research Grant (Number: 1001/CIPPT/813043). Y. Chen was supported by UM.C/625/1/HIR/MOHE/MED/16/5. T. Lakshmipriya was supported by the Research fellowship from USM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subash C. B. Gopinath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gopinath, S.C.B., Citartan, M., Lakshmipriya, T., Tang, TH., Chen, Y. (2015). Gold Nanoparticles in Biosensing Analyses. In: Lungu, M., Neculae, A., Bunoiu, M., Biris, C. (eds) Nanoparticles' Promises and Risks. Springer, Cham. https://doi.org/10.1007/978-3-319-11728-7_11

Download citation

Publish with us

Policies and ethics