Skip to main content

O-BEE-COL: Optimal BEEs for COLoring Graphs

  • Conference paper
  • First Online:
Artificial Evolution (EA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8752))

Abstract

Graph Coloring, one of the most challenging combinatorial problems, finds applicability in many real-world tasks. In this work we have developed a new artificial bee colony algorithm (called O-BEE-COL) for solving this problem. The special features of the proposed algorithm are (i) a SmartSwap mutation operator, (ii) an optimized GPX operator, and (iii) a temperature mechanism. Various studies are presented to show the impact factor of the three operators, their efficiency, the robustness of O-BEE-COL, and finally the competitiveness of O-BEE-COL with respect to the state-of-the-art. Inspecting all experimental results we can claim that: (a) disabling one of these operators O-BEE-COL worsens the performances in term of the Success Rate (SR), and/or best coloring found; (b) O-BEE-COL obtains comparable, and competitive results with respect to state-of-the-art algorithms for the Graph Coloring Problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://mat.gsia.cmu.edu/COLOR/instances.html

References

  1. Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: Probability distribution of solution time in GRASP: an experimental investigation. J. heuristics 8, 343–373 (2002)

    Article  MATH  Google Scholar 

  2. Aiex, R.M., Resende, M.G.C., Ribeiro, C.C.: TTTPLOTS: a perl program to create time-to-target plots. Optim. Lett. 1, 355–366 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization. Inf. Sci. 192, 120–142 (2012)

    Article  Google Scholar 

  4. Avanthay, C., Hertz, A., Zufferey, N.: A variable neighborhood search for graph coloring. Eur. J. Oper. Res. 151(2), 379–388 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouziri, H., Mellouli, K., Talbi, E.-G.: The k-coloring fitness landscape. J. Comb. Optim. 21(3), 306–329 (2011)

    Article  MathSciNet  Google Scholar 

  6. Bui, T.N., Nguyen, T.-V.H., Patel, C.M., Phan, K.-A.T.: An ant-based algorithm for coloring graphs. Discrete Appl. Math. 156, 190–200 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caramia, M., Dell’Olmo, P.: Coloring graphs by iterated local search traversing feasible and infeasible solutions. Discrete Appl. Math. 156, 201–217 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chow, F.C., Hennessy, J.L.: The priority-based coloring approach to register allocation. ACM Trans. Program. Lang. Syst. 12, 501–536 (1990)

    Article  Google Scholar 

  9. Consoli, P., Collerá, A., Pavone, M.: Swarm intelligence heuristics for graph coloring problem. In: IEEE Congress on Evolutionary Computation (CEC), vol. 1, pp. 1909–1916 (2013)

    Google Scholar 

  10. Costa, D., Hertz, A.: Ants can colour graphs. J. Oper. Res. Soc. 48, 295–305 (1997)

    Article  MATH  Google Scholar 

  11. Cutello, V., Nicosia, G., Pavone, M.: An immune algorithm with stochastic aging and kullback entropy for the chromatic number problem. J. Comb. Optim. 14(1), 9–33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Werra, D.: An introduction to timetabling. Eur. J. Oper. Res. 19, 151–162 (1985)

    Article  MATH  Google Scholar 

  13. Dowsland, K.A., Thompson, J.M.: An improved ant colony optimisation heuristic for graph colouring. Discrete Appl. Math. 156(3), 313–324 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dukanovic, I., Rendl, F.: A semidefinite programming-based heuristic for graph coloring. Discrete Appl. Math. 156, 180–189 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Galinier, P., Hao, J.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gamst, A.: Some lower bounds for a class of frequency assignment problems. IEEE Trans. Veh. Technol. 35, 8–14 (1986)

    Article  Google Scholar 

  17. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  18. Garey, M.R., Johnson, D.S., So, H.C.: An application of graph coloring to printed circuit testing. IEEE Trans. Circuits Syst. CAS–23, 591–599 (1976)

    Article  MathSciNet  Google Scholar 

  19. Glass, C.: Bag rationalization for a food manufacturer. J. Oper. Res. Soc. 53, 544–551 (2002)

    Article  MATH  Google Scholar 

  20. Glass, C.A., Prügel-Bennet, A.: Genetic algorithm for graph coloring: exploration of Galinier and hao’s algorithm. J. Comb. Optim. 7(3), 229–236 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discrete Appl. Math. 156, 2551–2560 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Johnson, D.S., Trick, M.A.: Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  23. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Karaboga, D., Basturk, B.: On the performance of Artificial Bee Colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697 (2008)

    Article  Google Scholar 

  25. Krasnogor, N., Smith, J.E.: A tutorial for competent memetic algorithms: model, taxonomy and design issues. IEEE Trans. Evol. Comput. 9(5), 474–488 (2005)

    Article  Google Scholar 

  26. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res. Natl. Bur. Stan. 84, 489–505 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Oner, A., Ozcan, S., Dengi, D.: Optimization of university course scheduling problem with a hybrid artificial bee colony algorithm. In: IEEE Congress on Evolutionary Computation, pp. 339–346 (2011)

    Google Scholar 

  28. Pavone, M., Narzisi, G., Nicosia, G.: Clonal selection - an immunological algorithm for global optimization over continuous spaces. J. Global Optim. 53(4), 769–808 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Prestwich, S.: Generalised graph colouring by a hybrid of local search and constraint programming. Discrete Appl. Math. 156, 148–158 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Qin, J., Yin, Y., Ban, X.-J.: Hybrid discrete particle swarm algorithm for graph coloring problem. J. Comput. 6(6), 1175–1182 (2011)

    Article  Google Scholar 

  31. Rodriguez, F.J., García-Martínez, C., Blum, C., Lozano, M.: An artificial bee colony algorithm for the unrelated parallel machines scheduling problem. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 143–152. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  32. Torkestani, J.A., Meybodi, M.R.: A new vertex coloring algorithm based on variable action-set learning automata. Comput. Inform. 29(1), 447–466 (2010)

    MathSciNet  Google Scholar 

  33. Zhipeng, L., Hao, J.-K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res. 203(1), 241–250 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Pavone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Consoli, P., Pavone, M. (2014). O-BEE-COL: Optimal BEEs for COLoring Graphs. In: Legrand, P., Corsini, MM., Hao, JK., Monmarché, N., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2013. Lecture Notes in Computer Science(), vol 8752. Springer, Cham. https://doi.org/10.1007/978-3-319-11683-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11683-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11682-2

  • Online ISBN: 978-3-319-11683-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics