Skip to main content

What Makes an Instance Difficult for Black-Box 0–1 Evolutionary Multiobjective Optimizers?

  • Conference paper
  • First Online:
Artificial Evolution (EA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8752))

Abstract

This paper investigates the correlation between the characteristics extracted from the problem instance and the performance of a simple evolutionary multiobjective optimization algorithm. First, a number of features are identified and measured on a large set of enumerable multiobjective NK-landscapes with objective correlation. A correlation analysis is conducted between those attributes, including low-level features extracted from the problem input data as well as high-level features extracted from the Pareto set, the Pareto graph and the fitness landscape. Second, we experimentally analyze the (estimated) running time of the global SEMO algorithm to identify a \((1+\varepsilon )\)-approximation of the Pareto set. By putting this performance measure in relation with problem instance features, we are able to explain the difficulties encountered by the algorithm with respect to the main instance characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguirre, H.E., Tanaka, K.: Working principles, behavior, and performance of MOEAs on MNK-landscapes. Eur. J. Oper. Res. 181(3), 1670–1690 (2007)

    Article  MATH  Google Scholar 

  2. Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks and the performance of iterated local search. In: Genetic and Evolutionary Computation Conference (GECCO 2012), pp. 369–376 (2012)

    Google Scholar 

  3. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  4. Gorski, J., Klamroth, K., Ruzika, S.: Connectedness of efficient solutions in multiple objective combinatorial optimization. J. Optim. Theory Appl. 150(3), 475–497 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hansen, N., Auger, A., Ros, R., Finck, S., Pošík, P.: Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009. In: Conference on Genetic and Evolutionary Computation (GECCO 2010), pp. 1689–1696 (2010)

    Google Scholar 

  6. Kauffman, S.A.: The Origins of Order. Oxford University Press, New York (1993)

    Google Scholar 

  7. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem. Nat. Comput. 3(1), 37–51 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Symposium on Foundations of Computer Science (FOCS 2000), pp. 86–92. IEEE (2000)

    Google Scholar 

  9. Paquete, L., Camacho, C., Figueira, J.R.: A two-phase heuristic for the biobjective 0/1 knapsack problem. Unpublished (2008)

    Google Scholar 

  10. Paquete, L., Stützle, T.: Clusters of non-dominated solutions in multiobjective combinatorial optimization: an experimental analysis. In: Barichard, V., et al. (eds.) Multiobjective Programming and Goal Programming. Lecture Notes in Economics and Mathematical Systems, vol. 618, pp. 69–77. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Paquete, L., Schiavinotto, T., Stützle, T.: On local optima in multiobjective combinatorial optimization problems. Ann. Oper. Res. 156(1), 83–97 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives. Eur. J. Oper. Res. 227(2), 331–342 (2013)

    Article  MathSciNet  Google Scholar 

  13. Weinberger, E.D.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63(5), 325–336 (1990)

    Article  MATH  Google Scholar 

  14. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Liefooghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Liefooghe, A., Verel, S., Aguirre, H., Tanaka, K. (2014). What Makes an Instance Difficult for Black-Box 0–1 Evolutionary Multiobjective Optimizers?. In: Legrand, P., Corsini, MM., Hao, JK., Monmarché, N., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2013. Lecture Notes in Computer Science(), vol 8752. Springer, Cham. https://doi.org/10.1007/978-3-319-11683-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11683-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11682-2

  • Online ISBN: 978-3-319-11683-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics