Skip to main content

An Effective NMF-Based Method for Supervised Dimension Reduction

  • Conference paper
Knowledge and Systems Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 326))

Abstract

Sparse topic modeling is a potential approach to learning meaningful hidden topics from large datasets with high dimension and complex distribution. We propose a sparse NMF-based method for supervised dimension reduction which aims to detect the particular topics of each class. Beside exploiting constraint convex combination of the hidden topics for each instance, our method separably learns among classes to extract interpretable and meaningful class topics. Our experimental results showed the effectiveness of our approach via significant criteria such as separability, interpretability, sparsity and performance in classification task of large datasets with high dimension and complex distribution. Our obtained results are highly competitive with state-of-the-art NMF-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, Y.-X., Zhang, Y.-J.: Nonnegative matrix factorization: A comprehensive review. IEEE Transactions on Knowledge and Data Engineering 25(6), 1336–1353 (2013)

    Article  Google Scholar 

  2. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  3. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS, pp. 556–562 (2000)

    Google Scholar 

  4. Zhang, Z.-Y.: Divergence functions of non negative matrix factorization: A comparison study. Communications in Statistics-Simulation and Computation 40(10), 1594–1612 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, S.Z., Hou, X., Zhang, H., Cheng, Q.: Learning spatially localized, parts-based representation. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I–207. IEEE (2001)

    Google Scholar 

  6. Choi, S.: Algorithms for orthogonal nonnegative matrix factorization. In: IEEE International Joint Conference on Neural Networks, IJCNN 2008 (IEEE World Congress on Computational Intelligence), pp. 1828–1832. IEEE (2008)

    Google Scholar 

  7. Li, H., Adal, T., Wang, W., Emge, D., Cichocki, A.: Non-negative matrix factorization with orthogonality constraints and its application to raman spectroscopy. The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology 48(1-2), 83–97 (2007)

    Article  Google Scholar 

  8. Wang, Y., Jia, Y.: Fisher non-negative matrix factorization for learning local features. In: Proc. Asian Conf. on Comp. Vision. Citeseer (2004)

    Google Scholar 

  9. Lee, H., Yoo, J., Choi, S.: Semi-supervised nonnegative matrix factorization. IEEE Signal Processing Letters 17(1), 4–7 (2010)

    Article  Google Scholar 

  10. Nguyen, D.K., Than, K., Ho, T.B.: Simplicial nonnegative matrix factorization. In: IEEE International Conference on Research, Innovation and Vision for Future, RIVF, pp. 47–52 (2013)

    Google Scholar 

  11. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. The Journal of Machine Learning Research 5, 1457–1469 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Lawson, C.L., Hanson, R.J.: Solving least squares problems, vol. 161. SIAM (1974)

    Google Scholar 

  13. Clarkson, K.L.: Coresets, sparse greedy approximation, and the frank-wolfe algorithm. ACM Transactions on Algorithms (TALG) 6(4), 63 (2010)

    MathSciNet  Google Scholar 

  14. Than, K., Ho, T.B.: Fully sparse topic models. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 490–505. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Than, K., Ho, T.B., Nguyen, D.K., Khanh, P.N.: Supervised dimension reduction with topic models. Journal of Machine Learning Research - Proceedings Track 25, 395–410 (2012)

    Google Scholar 

  16. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of Machine Learning Research 9(11) (2008)

    Google Scholar 

  17. Keerthi, S.S., Sundararajan, S., Chang, K.-W., Hsieh, C.-J., Lin, C.-J.: A sequential dual method for large scale multi-class linear svms. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 408–416. ACM (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngo Van Linh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Van Linh, N., Kim Anh, N., Than, K. (2015). An Effective NMF-Based Method for Supervised Dimension Reduction. In: Nguyen, VH., Le, AC., Huynh, VN. (eds) Knowledge and Systems Engineering. Advances in Intelligent Systems and Computing, vol 326. Springer, Cham. https://doi.org/10.1007/978-3-319-11680-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11680-8_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11679-2

  • Online ISBN: 978-3-319-11680-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics