Skip to main content

Global Microbiome for Agroecology, Industry, and Human Well-Being: Opportunities and Challenges in Climate Change

  • Chapter
  • First Online:
Microbiome Community Ecology

Part of the book series: SpringerBriefs in Ecology ((BRIEFSECOLOGY))

Abstract

Microbiome demonstrates tremendous functional diversity and thus it drives numerous services (e.g., nutrient cycling, plant and animal/human host fitness, biodegradation of contaminants, industrial processes such as the production of biofuel and other products, etc.). Despite some correlational survey type reports, it has been challenging to link microbiome species diversity to microbiome-driven specific services, especially in the context of biodiversity and ecosystem functioning research (BDEF). Theoretical, methodological, and practical limitations represent numerous challenges to extend the implications of microbiome diversity in ecosystem nutrient management, plant growth promotion, bioremediation, host fitness and industrial processes, etc. Though the recent implications of ecology theory in microbiome ecology, the pros and cons of classical ecology theory may not be enough for full comprehension of microbiome diversity–services relationship. Meanwhile, a silent loss of microbiome diversity could potentially reduce the multifunctionality and capacity of global ecosystem to buffer the adverse consequences of climate and land use changes. Developing new insights, hypotheses, and theories keeping in mind the tremendous species or traits diversity of global microbiome and empirically analyzing the merits and demerits of classical ecological theory may advance the implications of microbiome diversity—functioning research in environmental, agroecological, industrial, and medical fields. Moreover, it may help to predict the functional responses of global microbiome diversity to climate and land use changes, which is instrumental for developing strategies aimed at sustainable utilization and conservation of microbiome natural resources for human well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agler MT, Spirito CM, Usack JG et al (2012) Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates. Energy Environ Sci 5:8189–8192. doi:10.1039/c2ee22101b

    CAS  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362. doi:10.1016/j.tibtech.2007.05.005

    CAS  PubMed  Google Scholar 

  • Arshad M, Hussain S, Saleem M (2008) Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa. J Appl Microbiol 104:364–370. doi:10.1111/j.1365-2672.2007.03561.x

    CAS  PubMed  Google Scholar 

  • Azam F, Fenchel T, Field J et al (1983) The ecological role of water column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Google Scholar 

  • Badri DV, Zolla G, Bakker MG et al (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198:264–273. doi:10.1111/nph.12124

    CAS  PubMed  Google Scholar 

  • Bakker MG, Manter DK, Sheflin AM et al (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13. doi:10.1007/s11104-012-1361-x

    CAS  Google Scholar 

  • Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF (1987) Allocating resources to reproduction and defense. Bioscience 37:58–67. doi:10.2307/1310178

    Google Scholar 

  • Bell T, Newman JA, Silverman BW et al (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160. doi:10.1038/nature03891

    CAS  PubMed  Google Scholar 

  • Bell T, Bonsall MB, Buckling A et al (2010) Protists have divergent effects on bacterial diversity along a productivity gradient. Biol Lett 6:639–642. doi:10.1098/rsbl.2010.0027

    PubMed Central  PubMed  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P et al (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. doi:10.1111/j.1461-0248.2011.01736.x

    Google Scholar 

  • Benner R (2011) Biosequestration of carbon by heterotrophic microorganisms. Nat Rev Micro. doi:10.1038/nrmicro2386-c3

    Google Scholar 

  • Bent SJ, Forney LJ (2008) The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J 2:689–695. doi:10.1038/ismej.2008.44

    CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. doi:10.1016/j.tplants.2012.04.001

    CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. doi:10.1111/j.1574- 6941.2009.00654.x

    CAS  PubMed  Google Scholar 

  • Bever JD, Platt TG, Morton ER (2012) Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 66:265–283. doi:10.1146/annurev-micro-092611-150107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631. doi:10.1111/j.1469-8137.2004.01066.x

    Google Scholar 

  • Brucker R, Harris R, Schwantes C et al (2008) Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus. J Chem Ecol 34:1422–1429. doi:10.1007/s10886-008-9555-7

    CAS  PubMed  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95. doi:10.1038/nature11336

    CAS  PubMed  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499. doi:10.1007/s00374-012-0691-4

    Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Google Scholar 

  • Chung SH, Rosa C, Scully ED et al (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci U S A 110:15728–15733. doi:10.1073/pnas.1308867110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark RR, Chian ES, Griffin RA (1979) Degradation of polychlorinated biphenyls by mixed microbial cultures. Appl Environ Microbiol 37:680–685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899. doi:10.1126/science.230.4728.895

    CAS  PubMed  Google Scholar 

  • Costello EK, Stagaman K, Dethlefsen L et al (2012) The application of ecological theory toward an understanding of the human microbiome. Science 336:1255–1262. doi:10.1126/science.1224203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cotterill FPD, Al-Rasheid K, Foissner W (2007) Conservation of protists: is it needed at all? Biodivers Conserv 17:427–443. doi:10.1007/s10531-007-9261-8

    Google Scholar 

  • Cruz-Martínez K, Suttle KB, Brodie EL et al (2009) Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J 3:738–744. doi:10.1038/ismej.2009.16

    PubMed  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99:10494–10499. doi:10.1073/pnas.142680199

    CAS  PubMed Central  PubMed  Google Scholar 

  • D’alessandro M, Erb M, Ton J et al (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ 37:813–826. doi:10.1111/pce.12220

    PubMed Central  PubMed  Google Scholar 

  • Darwin C (1975) Charles Darwin’s natural selection: being the second part of his big species book written from 1856 to 1858 (ed Stauffer RC). Cambridge University Press, Cambridge

    Google Scholar 

  • Dematheis F, Zimmerling U, Flocco C et al (2012) Multitrophic interaction in the rhizosphere of maize: root feeding of Western Corn Rootworm larvae alters the microbial community composition. PLoS ONE 7:e37288. doi:10.1371/journal.pone.0037288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Der Yang R, Humphrey AE (1975) Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol Bioeng 17:1211–1235. doi:10.1002/bit.260170809

    Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262–265. doi:10.1038/24376

    CAS  Google Scholar 

  • Dussutour A, Latty T, Beekman M, Simpson SJ (2010) Amoeboid organism solves complex nutritional challenges. Proc Natl Acad Sci U S A 107:4607–4611. doi:10.1073/pnas.0912198107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eldar A (2011) Social conflict drives the evolutionary divergence of quorum sensing. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1102923108

    Google Scholar 

  • Elsas JD van, Chiurazzi M, Mallon CA et al (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci U S A 109:1159–1164. doi:10.1073/pnas.1109326109

    PubMed Central  PubMed  Google Scholar 

  • Estes JA, Terborgh J, Brashares JS et al (2011) Trophic downgrading of planet Earth. Science 333:301–306. doi:10.1126/science.1205106

    CAS  PubMed  Google Scholar 

  • Finlay BJ, Clarke KJ (1999) Ubiquitous dispersal of microbial species. Nature 400:828–828. doi:10.1038/23616

    CAS  Google Scholar 

  • Garbeva P, Tyc O, Remus-Emsermann MNP et al (2011) No apparent costs for facultative antibiotic production by the soil bacterium pseudomonas fluorescens Pf0-1. PLoS ONE 6:e27266. doi:10.1371/journal.pone.0027266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghafari P, St-Denis CH, Power ME et al (2008) Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat Nanotechnol 3:347–351. doi:10.1038/nnano.2008.109

    CAS  PubMed  Google Scholar 

  • Girvan MS, Campbell CD, Killham K et al (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7:301–313. doi:10.1111/j.1462-2920.2005.00695.x

    CAS  PubMed  Google Scholar 

  • Glick BR (2004) Teamwork in phytoremediation. Nature biotechnology, 22(5), 526–527. doi:10.1038/nbt0504–526

    Google Scholar 

  • Gravel D, Bell T, Barbera C et al (2011) Experimental niche evolution alters the strength of the diversity-productivity relationship. Nature 469:89–92. doi:10.1038/nature09592

    CAS  PubMed  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. doi:10.1038/nrmicro1129

    CAS  PubMed  Google Scholar 

  • Hansen SK, Rainey PB, Haagensen JAJ, Molin S (2007) Evolution of species interactions in a biofilm community. Nature 445:533–536. doi:10.1038/nature05514

    CAS  PubMed  Google Scholar 

  • Hao XH, Liu SL, Wu JS et al (2007) Effect of long-term application of inorganic fertilizer and organic amendments on soil organic matter and microbial biomass in three subtropical paddy soils. Nutr Cycl Agroecosyst 81:17–24. doi:10.1007/s10705-007-9145-z

    Google Scholar 

  • Harris RN, James TY, Lauer A et al (2006) Amphibian pathogen batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. EcoHealth 3:53–56. doi:10.1007/s10393-005-0009-1

    Google Scholar 

  • Hector A (2011) Ecology: diversity favours productivity. Nature 472(7341):45–46

    CAS  PubMed  Google Scholar 

  • Heijden VD, A MG, Bardgett RD et al (2007) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. doi:10.1111/j.1461-0248.2007.01139.x

    PubMed  Google Scholar 

  • Glick BR (2004) Teamwork in phytoremediation. Nature biotechnology, 22(5), 526–527. doi:10.1038/nbt0504–526

    Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25. doi:10.1038/nrmicro2259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hussain S, Arshad M, Saleem M, Khalid A (2007a) Biodegradation of alpha- and beta-endosulfan by soil bacteria. Biodegradation 18:731–740. doi:10.1007/s10532-007-9102-1

    CAS  PubMed  Google Scholar 

  • Hussain S, Arshad M, Saleem M, Zahir ZA (2007b) Screening of soil fungi for in vitro degradation of endosulfan. World Journal of Microbiology and Biotechnology, 23(7), 939–945. DOI: 10.1007/s11274-006-9317-z

    Google Scholar 

  • Hussain S, Siddique T, Arshad M, Saleem M (2009a) Bioremediation and phytoremediation of pesticides: recent advances. Crit Rev Environ Sci Technol 39:843–907. doi:10.1080/10643380801910090

    Google Scholar 

  • Hussain S, Siddique T, Saleem M et al (2009b) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Advances in agrononmy. Academic, Massachusetts, pp 159–200

    Google Scholar 

  • Hussain S, Arshad M, Shaharoona B, Saleem M, Khalid A (2009c) Concentration dependent growth/non-growth linked kinetics of endosulfan biodegradation by Pseudomonas aeruginosa. World J Microbiol Biotechnol 25(5):853–858. doi:10.1007/s11274-009-9958-9

    Google Scholar 

  • Morin JP, McGrady-Steed J (2004) Biodiversity and ecosystem functioning in aquatic microbial systems: a new analysis of temporal variation and species richness-predictability relations. Oikos 104:458–466. doi:10.1111/j.0030-1299.2004.13256.x

    Google Scholar 

  • Jesus E da C, Marsh TL, Tiedje JM, Moreira FM de S (2009) Changes in land use alter the structure of bacterial communities in Western Amazon soils. ISME J 3:1004–1011. doi:10.1038/ismej.2009.47

    Google Scholar 

  • Jiao N, Herndl GJ, Hansell DA et al (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Micro 8:593–599. doi:10.1038/nrmicro2386

    CAS  Google Scholar 

  • Johnson K, Jiang Y, Kleerebezem R et al (2009) Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromolecules 10:670–676. doi:10.1021/bm8013796

    CAS  PubMed  Google Scholar 

  • Jones SE, Lennon JT (2010) Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci U S A 107:5881–5886. doi:10.1073/pnas.0912765107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keesing F, Belden LK, Daszak P et al (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:647–652. doi:10.1038/nature09575

    CAS  PubMed  Google Scholar 

  • Kempes CP, Dutkiewicz S, Follows MJ (2012) Growth, metabolic partitioning, and the size of microorganisms. Proc Natl Acad Sci U S A 109:495–500. doi:10.1073/pnas.1115585109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kleerebezem R, van Loosdrecht MC (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212. doi:10.1016/j.copbio.2007.05.001

    CAS  PubMed  Google Scholar 

  • Kneitel JM, Chase JM (2004) Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol Lett 7:69–80. doi:10.1046/j.1461-0248.2003.00551.x

    Google Scholar 

  • Kongjan P, Min B, Angelidaki I (2009) Biohydrogen production from xylose at extreme thermophilic temperatures (70 °C) by mixed culture fermentation. Water Res 43:1414–1424. doi:10.1016/j.watres.2008.12.016

    CAS  PubMed  Google Scholar 

  • Kuta K, Richardson L (2002) Ecological aspects of black band disease of corals: relationships between disease incidence and environmental factors. Coral Reefs 21:393–398. doi:10.1007/s00338-002-0261-6

    Google Scholar 

  • Langenheder S, Bulling MT, Solan M, Prosser JI (2010) Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. PLoS ONE 5:e10834. doi:10.1371/journal.pone.0010834

    PubMed Central  PubMed  Google Scholar 

  • Lau JA, Lennon JT (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci U S A 109:14058–14062. doi:10.1073/pnas.1202319109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee W-J, Brey PT (2013) How microbiomes influence metazoan development:insights from history and Drosophila modeling of gut-microbe interactions. Annu Rev Cell Dev Biol 29:571–592. doi:10.1146/annurev-cellbio-101512-122333

    CAS  PubMed  Google Scholar 

  • Lee W-J, Hase K (2014) Gut microbiota-generated metabolites in animal health and disease. Nat Chem Biol 10:416–424. doi:10.1038/nchembio.1535

    CAS  PubMed  Google Scholar 

  • Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Micro 9:119–130. doi:10.1038/nrmicro2504

    CAS  Google Scholar 

  • Leroy PD, Sabri A, Heuskin S et al (2011) Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat Commun 2:348. doi:10.1038/ncomms1347

    PubMed Central  PubMed  Google Scholar 

  • Lederberg J, Mccray A (2001) ‘Ome sweet ‘omics—a genealogical treasury of words. Scientist 15:8–10

    Google Scholar 

  • Li Y, Wang L, Zhang W et al (2010) Variability of soil carbon sequestration capability and microbial activity of different types of salt marsh soils at Chongming Dongtan. Ecol Eng 36:1754–1760. doi:16/j.ecoleng.2010.07.029

    Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883. doi:10.1128/AEM.69.4.1875-1883.2003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loper JE, Hassan KA, Mavrodi DV et al (2012) Comparative genomics of plant-associated pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e1002784. doi:10.1371/journal.pgen.1002784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76. doi:10.1038/35083573

    CAS  PubMed  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90. doi:10.1038/nature11237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Majeed H, Gillor O, Kerr B, Riley MA (2011) Competitive interactions in Escherichia coli populations: the role of bacteriocins. ISME J 5:71–81. doi:10.1038/ismej.2010.90

    PubMed Central  PubMed  Google Scholar 

  • Mandelbaum RT, Wackett LP, Allan DL (1993) Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures. Appl Environ Microbiol 59:1695–1701

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCann KS (2000) The diversity-stability debate. Nature 405:228–233. doi:10.1038/35012234

    CAS  PubMed  Google Scholar 

  • McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798. doi:10.1038/27427

    CAS  Google Scholar 

  • McGrady-Steed J, Harris PM, Morin PJ (1997) Biodiversity regulates ecosystem predictability. Nature 390:162–165. doi:10.1038/36561

    CAS  Google Scholar 

  • Melo VS, Desjardins T, Silva ML Jr et al (2012) Consequences of forest conversion to pasture and fallow on soil microbial biomass and activity in the eastern Amazon. Soil Use Manage 28:530–535. doi:10.1111/sum.12003

    Google Scholar 

  • Mendes R, Kruijt M, Bruijn I de et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100. doi:10.1126/science.1203980

    CAS  PubMed  Google Scholar 

  • Mishra S, Jyot J, Kuhad RC, Lal B (2001) Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67:1675–1681. doi:10.1128/AEM.67.4.1675-1681.2001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monier J-M, Lindow SE (2004) Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Appl Environ Microbiol 70:346–355. doi:10.1128/AEM.70.1.346-355.2004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morales SE, Cosart T, Holben WE (2010) Bacterial gene abundances as indicators of greenhouse gas emission in soils. ISME J 4:799–808. doi:10.1038/ismej.2010.8

    CAS  PubMed  Google Scholar 

  • Murty D, Kirschbaum MUF, Mcmurtrie RE, Mcgilvray H (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Change Biol 8:105–123. doi:10.1046/j.1354-1013.2001.00459.x

    Google Scholar 

  • Naeem S, Li S (1997) Biodiversity enhances ecosystem reliability. Nature 390:507–509. doi:10.1038/37348

    CAS  Google Scholar 

  • Naeem S, Thompson LJ, Lawler SP et al (1994) Declining biodiversity can alter the performance of ecosystems. Nature 368:734–737. doi:10.1038/368734a0

    Google Scholar 

  • Paganelli D, Sconfietti R (2013) Biodiversity loss in a small riverine wetland of the Ticino river (Lombardia, Northern Italy). J Limnol. doi:10.4081/jlimnol.2013.e48

    Google Scholar 

  • Peter H, Beier S, Bertilsson S et al (2011) Function-specific response to depletion of microbial diversity. ISME J 5:351–361. doi:10.1038/ismej.2010.119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson CN, Day S, Wolfe BE et al (2008) A keystone predator controls bacterial diversity in the pitcher-plant (Sarracenia purpurea) microecosystem. Environ Microbiol 10:2257–2266. doi:10.1111/j.1462-2920.2008.01648.x

    CAS  PubMed  Google Scholar 

  • Petraitis PS, Latham RE, Niesenbaum RA (1989) The maintenance of species diversity by disturbance. Q Rev Biol 64:393–418

    Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013a) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. doi:10.1038/nrmicro3109

    Google Scholar 

  • Philippot L, Spor A, Hénault C et al (2013b) Loss in microbial diversity affects nitrogen cycling in soil. ISME J 7:1609–1619. doi:10.1038/ismej.2013.34

    Google Scholar 

  • Prosser JI, Bohannan BJM, Curtis TP et al (2007) The role of ecological theory in microbial ecology. Nat Rev Micro 5:384–392. doi:10.1038/nrmicro1643

    CAS  Google Scholar 

  • Rittmann BE (2006) Microbial ecology to manage processes in environmental biotechnology. Trends Biotechnol 24:261–266. doi:10.1016/j.tibtech.2006.04.003

    CAS  PubMed  Google Scholar 

  • Rodrigues JLM, Pellizari VH, Mueller R et al (2013) Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad Sci U S A 110:988–993. doi:10.1073/pnas.1220608110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenberg E, Ben-Haim Y (2002) Microbial diseases of corals and global warming. Environ Microbiol 4:318–326. doi:10.1046/j.1462-2920.2002.00302.x

    PubMed  Google Scholar 

  • Rosenberg K, Bertaux J, Krome K et al (2009) Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J 3:675–684

    CAS  PubMed  Google Scholar 

  • Saccà A, Borrego CM, Renda R et al (2009) Predation impact of ciliated and flagellated protozoa during a summer bloom of brown sulfur bacteria in a meromictic coastal lake. FEMS Microbiol Ecol 70:42–53. doi:10.1111/j.1574-6941.2009.00735.x

    PubMed  Google Scholar 

  • Salcher MM, Posch T, Pernthaler J (2013) In situ substrate preferences of abundant bacterioplankton populations in a prealpine freshwater lake. ISME J 7:896–907. doi:10.1038/ismej.2012.162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saleem M (2012) Bacteria-protist interactions in the context of biodiversity and ecosystem functioning research (Doctoral dissertation)

    Google Scholar 

  • Saleem M, Moe LA (2014) Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice. Trends Biotechnol 32:529–537

    CAS  PubMed  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648. doi:10.1007/s10295-007-0240-6

    CAS  PubMed  Google Scholar 

  • Saleem M, Brim H, Hussain S, Arshad M, Leigh MB (2008) Perspectives on microbial cell surface display in bioremediation. Biotechnol Adv 26(2):151–161. doi:10.1016/j.biotechadv.2007.10.002

    CAS  PubMed  Google Scholar 

  • Saleem M, Fetzer I, Dormann CF et al (2012) Predator richness increases the effect of prey diversity on prey yield. Nat Commun. doi:10.1038/ncomms2287

    Google Scholar 

  • Saleem M, Fetzer I, Harms H, Chatzinotas A (2013) Diversity of protists and bacteria determines predation performance and stability. ISME J 7:1912–1921. doi:10.1038/ismej.2013.95

    PubMed Central  PubMed  Google Scholar 

  • Saleem M, Fetzer I, Harms H, Chatzinotas A (2015) Trophic complexity in aqueous systems: Bacterial species richness and protistan predation regulate DOC and DTN removal

    Google Scholar 

  • Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant-microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30:177–184. doi:10.1016/j.tibtech.2011.11.002

    CAS  PubMed  Google Scholar 

  • Shannon C, Weaver W (1949) The mathematical theory of communication. University Illinois Press, Urbana

    Google Scholar 

  • Shin SC, Kim S-H, You H et al (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670–674. doi:10.1126/science.1212782

    CAS  PubMed  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688. doi:10.1038/163688a0

    Google Scholar 

  • Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555. doi:10.2136/sssaj2004.0347

    CAS  Google Scholar 

  • Soares-Filho B, Moutinho P, Nepstad D et al (2010) Role of Brazilian Amazon protected areas in climate change mitigation. Proc Natl Acad Sci U S A 107:10821–10826. doi:10.1073/pnas.0913048107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sommer F, Bäckhed F (2013) The gut microbiota-masters of host development and physiology. Nat Rev Microbiol 11:227–238. doi:10.1038/nrmicro2974

    CAS  PubMed  Google Scholar 

  • Steinbusch KJJ, Hamelers HVM, Schaap JD et al (2010) Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol 44:513–517. doi:10.1021/es902371e

    CAS  PubMed  Google Scholar 

  • Teeling H, Fuchs BM, Becher D et al (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336:608–611. doi:10.1126/science.1218344

    CAS  PubMed  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148. doi:10.1038/nature02121

    CAS  PubMed  Google Scholar 

  • Tian D, Traw MB, Chen JQ et al (2003) Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423:74–77. doi:10.1038/nature01588

    CAS  PubMed  Google Scholar 

  • Travis BJ, Rosenberg ND (1997) Modeling in situ bioremediation of tce at savannah river: effects of product toxicity and microbial interactions on tce degradation. Environ Sci Technol 31:3093–3102. doi:10.1021/es9610186

    CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483. doi:10.1146/annurev.phyto.36.1.453

    CAS  PubMed  Google Scholar 

  • Van Oosten VR, Bodenhausen N, Reymond P et al (2008) Differential effectiveness of microbially induced resistance against herbivorous insects in Arabidopsis. Mol Plant Microbe Interact 21:919–930. doi:10.1094/MPMI-21-7-0919

    CAS  PubMed  Google Scholar 

  • Venail PA, Vives MJ (2013) Positive effects of bacterial diversity on ecosystem functioning driven by complementarity effects in a bioremediation context. PLoS ONE 8:e72561. doi:10.1371/journal.pone.0072561

    CAS  PubMed Central  PubMed  Google Scholar 

  • Viñas M, Grifoll M, Sabaté J, Solanas AM (2002) Biodegradation of a crude oil by three microbial consortia of different origins and metabolic capabilities. J Ind Microbiol Biotechnol 28:252–260. doi:10.1038/sj/jim/7000236

    PubMed  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828-840. doi:10.1038/nrmicro2910

    CAS  PubMed  Google Scholar 

  • Wagner MR, Lundberg DS, Coleman-Derr D et al (2014) Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett. doi:10.1111/ele.12276

    Google Scholar 

  • Wang G, Or D (2013) Hydration dynamics promote bacterial coexistence on rough surfaces. ISME J 7:395–404. doi:10.1038/ismej.2012.115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346. doi:10.1146/annurev.cellbio.21.012704.131001

    CAS  PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens1. Annu Rev Phytopathol 40:309–348. doi:10.1146/annurev.phyto.40.030402.110010

    CAS  PubMed  Google Scholar 

  • Wilder CN, Diggle SP, Schuster M (2011) Cooperation and cheating in Pseudomonas aeruginosa: the roles of the las, rhl and pqs quorum-sensing systems. ISME J 5:1332–1343. doi:10.1038/ismej.2011.13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wittebolle L, Marzorati M, Clement L et al (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626. doi:10.1038/nature07840

    CAS  PubMed  Google Scholar 

  • Wu CH, Bernard SM, Andersen GL, Chen W (2009) Developing microbe–plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb Biotechnol 2:428–440. doi:10.1111/j.1751-7915.2009.00109.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc Natl Acad Sci U S A 96:1463–1468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT Jr (2003) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Advances in Agronomy. Academic, Massachusetts, pp 97–168

    Google Scholar 

  • Zeidan AA, Van Niel EWJ (2009) Developing a thermophilic hydrogen-producing co-culture for efficient utilization of mixed sugars. Int J Hydrog Energy 34:4524–4528. doi:10.1016/j.ijhydene.2008.07.092

    CAS  Google Scholar 

  • Zeidan AA, Van Niel EWJ (2010) A quantitative analysis of hydrogen production efficiency of the extreme thermophile Caldicellulosiruptor owensensis OLT. Int J Hydrog Energy 35:1128–1137. doi:10.1016/j.ijhydene.2009.11.082

    CAS  Google Scholar 

  • Zhang Q, Lambert G, Liao D et al (2011) Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333:1764–1767. doi:10.1126/science.1208747

    CAS  PubMed  Google Scholar 

  • Zöllner E, Hoppe H-G, Sommer U, Jürgens K (2009) Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnol Oceanogr 54:262–275 doi:10.4319/lo.2009.54(1):0262

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Saleem .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saleem, M. (2015). Global Microbiome for Agroecology, Industry, and Human Well-Being: Opportunities and Challenges in Climate Change. In: Microbiome Community Ecology. SpringerBriefs in Ecology. Springer, Cham. https://doi.org/10.1007/978-3-319-11665-5_6

Download citation

Publish with us

Policies and ethics